Zhou Xiaohong, Ren Xiaoming, Wei Chengfu, et al. Two-dimensional beam shaping for beams with large aspect ratio and variable divergence angle[J]. High Power Laser and Particle Beams, 2017, 29: 071003. doi: 10.11884/HPLPB201729.160520
Citation: Yang Xiao, Yang Jianhua, Qian Baoliang, et al. Breakdown characteristics study of glycerol medium in coaxial pulse forming line[J]. High Power Laser and Particle Beams, 2016, 28: 015017. doi: 10.11884/HPLPB201628.015017

Breakdown characteristics study of glycerol medium in coaxial pulse forming line

doi: 10.11884/HPLPB201628.015017
  • Received Date: 2015-10-21
  • Rev Recd Date: 2015-11-13
  • Publish Date: 2016-01-04
  • As the glycerol medium has important applications in the pulse forming line, its breakdown characteristics are studied experimentally in a scaled coaxial specimen under different conditions, including electrode surface, magnetic field, bubbles and so on. A thyristor controlled air-core pulse transformer with a maximum output voltage of 500 kV and the rising time of 26 s is built. A coaxial breakdown specimen immersed in pulsed magnetic field with the maximum magnetic field of 1 T is designed. Through the control of thyristors, the breakdown can be limited in the quasi stationary magnetic field. Four coaxial electrodes with the same shape but different surface disposed measures including sanding, wool polishing, metal electroplating and nonmetal electroplating are manufactured. The experimental results show that the breakdown of the glycerol has no polarity; the magnetic field of 1 T has no effect on the breakdown characteristics of the glycerin; different electrodes have significantly different microcosmic morphologies, resulting in the differences between breakdown characteristics of the glycerol, indicating that some kind of electronical process on the electrode surface has much influence on the breakdown; the probability of breakdown in glycerol can be reduced by evacuating the bubbles with large diameters, and the generated tiny bubbles after the breakdown reduce the average breakdown strength of the glycerol.
  • Relative Articles

    [1]Guo Linhui, Zhong Lixin, Lan Jianyu, Li Tao, Jiang Quanwei, Xie pengfei, Tan Hao, Sun Tangyou, Gao Songxin, Tang Chun. Research progress of laser wireless power transmission technology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250004
    [2]Wang Jinchuan, Li Mi, Du Jialin, Wang Dan, Li Tenglong, Wang Juntao, Zhou Tangjian, Shang Jianli, Gao Qingsong. 1.8 mJ high magnification Nd:YAG slab picosecond laser amplifier[J]. High Power Laser and Particle Beams, 2022, 34(6): 061001. doi: 10.11884/HPLPB202234.210562
    [3]Lai Wenchang, Ma Pengfei, Xiao Hu, Liu Wei, Li Can, Jiang Man, Xu Jiangming, Su Rongtao, Leng Jinyong, Ma Yanxing, Zhou Pu. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32(12): 121001. doi: 10.11884/HPLPB202032.200186
    [4]Xue Wenlong, Hu Chengzhi, Yue Wenjie, Jiang Junlin, Ding Yichen, Jiang Peipei, Wu Bo, Shen Yonghang. Yb-doped mode-locked fiber laser based on pre-chirp managed nonlinear amplification[J]. High Power Laser and Particle Beams, 2017, 29(09): 091001. doi: 10.11884/HPLPB201729.170105
    [5]Zhao Po, Yang Ruixia, Yan Lihua, An Zhenfeng. Wide-temperature-range and uncooled solid-state-laser[J]. High Power Laser and Particle Beams, 2016, 28(10): 101003. doi: 10.11884/HPLPB201628.151273
    [6]Fang Xiaoting, Yuan Shengfu, Hua Weihong, Yan Baozhu. Experimental study of small-scale direct current-discharge drived continuous-wave DF chemical laser[J]. High Power Laser and Particle Beams, 2015, 27(11): 111005. doi: 10.11884/HPLPB201527.111005
    [7]Wu Yijie, Peng Jiying, Yuan Ruixia. High repetition rate 1.34 μm Q-switched mode-locked Nd:YVO4 laser[J]. High Power Laser and Particle Beams, 2015, 27(11): 111007. doi: 10.11884/HPLPB201527.111007
    [8]Liu Jiao, Wang Juntao, Zhou Tangjian, Gao Qingsong. Analysis and developments of high-power planar waveguide lasers[J]. High Power Laser and Particle Beams, 2015, 27(06): 061015. doi: 10.11884/HPLPB201527.061015
    [9]Yao Wenming, Tan Huiming, Tian Yubing, Cui Jinjiang, Wang Fan, Dong Ningning. Continuously board-waveband tunable all-solid-state CW optical parametric oscillator based on PPMgLN[J]. High Power Laser and Particle Beams, 2013, 25(08): 2021-2026. doi: 10.3788/HPLPB20132508.2021
    [10]Zhang Zhiyong, Zhang Pu, Nie Zhiqiang, Li Xiaoning, Xiong Lingling, Liu Hui, Wang Zhenfu, Liu Xingsheng. Thermal crosstalk of high-power diode laser array[J]. High Power Laser and Particle Beams, 2013, 25(08): 1904-1910. doi: 10.3788/HPLPB20132508.1904
    [11]Qiao Hongchao, Zhao Jibin, Guo Qingyao. Development of laser system for laser peening[J]. High Power Laser and Particle Beams, 2013, 25(09): 2179-2180. doi: 10.3788/HPLPB20132509.2179
    [12]Li Bin, Li Lan, Jiao Luguang, Liu Liang, Zhou Qiong, Yuan Shengfu, Liu Wenguang. Heat transfer performance of water jet cooled mirror and its application in high power chemical lasers[J]. High Power Laser and Particle Beams, 2012, 24(01): 51-55.
    [13]Zhang Hui, Chen Yu, Wang Zhiteng, Zhao Chujun, Zhang Han. Wavelength-tunable passively Q-switched erbium-doped fiber laser with graphene-based saturable absorber[J]. High Power Laser and Particle Beams, 2012, 24(12): 2807-2810. doi: 10.3788/HPLPB20122412.2807
    [14]Yue Desheng, Li WenYu, Wang HongYan, Yang Zining, Xu Xiaojun. Alkali-vapor laser-excimer pumped alkali laser[J]. High Power Laser and Particle Beams, 2012, 24(10): 2271-2276. doi: 10.3788/HPLPB20122410.2271
    [15]zhang xiang, feng chi, xie xiying, yan lelun, lei hong, li qiang. Nanosecond electro-optically Q-switched Nd:YVO4 laser[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [16]zhang qiang, wang yuefeng, hou junyan, qiang jiping, lei chengqiang, zhu xiaolei, lu tingting, duan xintao. Simulation and experimentation of high power high repetition U folded resonator laser[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [17]zhang lei, lu yanhua, liu dong, tang chun, wang weimin, gao songxin. 6.2 W 589 nm yellow laser by extra-cavity sum-frequency[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [18]lu yanhua, zhang lei, liu dong, ma yi, tang chun, wang weimin. 7.13 W all-solid-state 1 319 nm macro-micro pulse laser[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [19]gao qing-song, tong li-xin, chen xiao-lin, chen jun, tang chun, feng guo-ying. High pulse repetition rate double-pass amplifier with the liquid phase conjugating mirror[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [20]huang zhi-long, liao da-xiong, zhang guo-biao. Test research on performance of the boundary scoop pumping diffuser[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 38.3 %FULLTEXT: 38.3 %META: 58.2 %META: 58.2 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 1.1 %其他: 1.1 %Austria: 0.1 %Austria: 0.1 %Brazil: 0.0 %Brazil: 0.0 %Central District: 0.1 %Central District: 0.1 %China: 0.7 %China: 0.7 %France: 0.3 %France: 0.3 %India: 0.0 %India: 0.0 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Norway: 0.1 %Norway: 0.1 %Osaka: 0.1 %Osaka: 0.1 %Romania: 0.1 %Romania: 0.1 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Taoyuan District: 0.3 %Taoyuan District: 0.3 %United States: 0.5 %United States: 0.5 %[]: 0.5 %[]: 0.5 %三明: 0.1 %三明: 0.1 %上海: 3.2 %上海: 3.2 %东京: 0.2 %东京: 0.2 %东莞: 0.3 %东莞: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.0 %临汾: 0.0 %临沂: 0.1 %临沂: 0.1 %丹东: 0.0 %丹东: 0.0 %丽水: 0.3 %丽水: 0.3 %乌兰察布: 0.0 %乌兰察布: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %北京: 4.3 %北京: 4.3 %十堰: 0.2 %十堰: 0.2 %南京: 0.5 %南京: 0.5 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.3 %台北: 0.3 %台州: 2.1 %台州: 2.1 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %喀什: 0.0 %喀什: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %墨尔本: 0.1 %墨尔本: 0.1 %大连: 0.0 %大连: 0.0 %天津: 0.2 %天津: 0.2 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常州: 0.1 %常州: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.6 %广州: 0.6 %廊坊: 0.0 %廊坊: 0.0 %张家口: 2.5 %张家口: 2.5 %德里: 0.0 %德里: 0.0 %悉尼: 0.0 %悉尼: 0.0 %成都: 0.8 %成都: 0.8 %扬州: 0.1 %扬州: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %普赖恩维尔: 0.0 %普赖恩维尔: 0.0 %杭州: 1.6 %杭州: 1.6 %榆林: 0.0 %榆林: 0.0 %武汉: 0.3 %武汉: 0.3 %沃思堡: 0.2 %沃思堡: 0.2 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %淄博: 0.1 %淄博: 0.1 %淮北: 0.1 %淮北: 0.1 %深圳: 0.4 %深圳: 0.4 %温州: 0.5 %温州: 0.5 %湖州: 0.8 %湖州: 0.8 %滨州: 0.0 %滨州: 0.0 %漯河: 1.0 %漯河: 1.0 %烟台: 0.1 %烟台: 0.1 %眉山: 0.0 %眉山: 0.0 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.0 %福州: 0.0 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 26.1 %芒廷维尤: 26.1 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.3 %苏州: 0.3 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.2 %衡阳: 0.2 %衢州: 1.4 %衢州: 1.4 %襄阳: 0.0 %襄阳: 0.0 %西宁: 33.6 %西宁: 33.6 %西安: 0.8 %西安: 0.8 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 1.0 %运城: 1.0 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.3 %金华: 0.3 %长春: 0.1 %长春: 0.1 %长沙: 0.6 %长沙: 0.6 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %随州: 0.0 %随州: 0.0 %青岛: 0.0 %青岛: 0.0 %首尔: 0.3 %首尔: 0.3 %其他其他AustriaBrazilCentral DistrictChinaFranceIndiaKorea Republic ofNorwayOsakaRomaniaSan LorenzoTaiwan, ChinaTaoyuan DistrictUnited States[]三明上海东京东莞中山临汾临沂丹东丽水乌兰察布佛山保定六安北京十堰南京博阿努瓦厦门台北台州合肥哈尔滨哥伦布喀什嘉兴墨尔本大连天津太原宁波安康宣城巴音郭楞常州平顶山广州廊坊张家口德里悉尼成都扬州昆明晋城普洱普赖恩维尔杭州榆林武汉沃思堡沈阳洛阳淄博淮北深圳温州湖州滨州漯河烟台眉山石家庄福州纽约绵阳芒廷维尤芝加哥苏州衡水衡阳衢州襄阳西宁西安贵阳达州运城邯郸郑州鄂州重庆金华长春长沙长治阳泉随州青岛首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1696) PDF downloads(333) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return