Bi Bi, Zhou Weimin, Shan Lianqiang, et al. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32: 042001. doi: 10.11884/HPLPB202032.200050
Citation: Gu Jianwei, Zhang Cheng, Wang Ruixue, et al. Characteristics of pulsed diffuse discharges under different conditions in atmospheric air[J]. High Power Laser and Particle Beams, 2016, 28: 015023. doi: 10.11884/HPLPB201628.015023

Characteristics of pulsed diffuse discharges under different conditions in atmospheric air

doi: 10.11884/HPLPB201628.015023
  • Received Date: 2015-09-01
  • Rev Recd Date: 2015-11-02
  • Publish Date: 2016-01-04
  • In this paper, a microsecond-pulse generator with a rise time of about 0.5 s, a pulse width of about 6 s and an amplitude of up to 40 kV, and a nanosecond-pulse generator with a rise time of about 150 ns, a pulse width of about 300 ns and an amplitude of 50 kV, were used to produce diffuse discharges at atmospheric pressure. A saw-blade and a knife blade were used as the electrodes. Characteristics of diffuse discharges under different conditions, in different cases of the applied voltage, pulse repetition frequency (PRF), anode structure and gap distances, were investigated by analyzing the voltage-current waveforms and discharge images. The experimental results showed that both microsecond-pulse and nanosecond-pulse power supplies could generate large-area diffuse discharges, and the maximum area reached 90 cm2. The uniformity of diffuse discharges were significantly affected by the pulse parameters and anode structure. The best homogeneity could be obtained in the case of a knife blade when nanosecond-pulse generator was used. Furthermore, under the same conditions, the instantaneous power for nanosecond-pulse discharges was larger than that for microsecond pulse discharges, and the largest instantaneous power was 275 kW. However, the energy for nanosecond-pulse discharges was smaller than that for microsecond pulse discharges. In addition, other things being equal, the conduction current decreased with the increase of the gap distance, the discharge intensity increased with the PRF, and the working range of the applied voltage significantly decreased with the PRF. Therefore, its most likely to obtain homogeneous diffuse discharges with wide range of working voltages in atmospheric pressure air when the knife blade electrode was used as the anode at low PRF.
  • Relative Articles

    [1]Rong Linyan, Mu Zhencheng, Zhou Wenzhong, Wan Maliang, Xie Zhexin, Wang Bo, Liu Meifei, Li Jian, Xu Xin’an, Zhang Hui, Li Song, Ouyang Huafu, Fu Shinian. RF power source system for boron neutron capture therapy test facility[J]. High Power Laser and Particle Beams, 2021, 33(5): 053007. doi: 10.11884/HPLPB202133.200307
    [2]Ji Ce, Zhou Liangji, Jiao Jian, Ren Fuchun, Chen Lin, Jiang Jihao, Zhao Yue. Reliability of large LTD device analysis[J]. High Power Laser and Particle Beams, 2018, 30(4): 045003. doi: 10.11884/HPLPB201830.170341
    [3]He Lu, Dai Bo, Zhang Dawei. Data compression for optical spectrum-encoding imaging system[J]. High Power Laser and Particle Beams, 2018, 30(9): 099002. doi: 10.11884/HPLPB201830.180090
    [4]Jiao Xiaoyi, Lin Jing, Cheng Xiaoming, Zhang Bin, Ding Yingchun. Imaging method for serial time-encoded amplified microscope[J]. High Power Laser and Particle Beams, 2016, 28(10): 101008. doi: 10.11884/HPLPB201628.160103
    [5]Zhang Yanhong, Sheng Liang, Zhang Mei. Simulation of ring-coded aperture imaging with space-variant point spread function and image restoration[J]. High Power Laser and Particle Beams, 2016, 28(12): 124003. doi: 10.11884/HPLPB201628.160067
    [6]Yang Pin, Yang Zhenghua, Li Jin, Dong Jianjun, Cao Zhurong, Yan Yadong, Wang Wei, Wei Mingzhi, Liu Shenye. Design and development of a static X-ray imaging system used on SG-Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2013, 25(11): 2895-2899. doi: 10.3788/HPLPB20132511.2895
    [7]Yu Bo, Su Ming, Huang Tianxuan, Chen Bolun, Jiang Wei, Pu Yudong, Yan Ji, Liu Shenye. Designing of diagnostic system for neutron penumbral imaging based on Shenguang-Ⅲ facility[J]. High Power Laser and Particle Beams, 2013, 25(10): 2604-2610. doi: 10.3788/HPLPB20132510.2604
    [8]Yu Bo, Su Ming, Liu ShenYe, Huang Tianxuan, Chen Bolun, Jiang Wei, Pu Yudong, Yan Ji. Simulation on spatial resolution of scintillator arrays based on neutron penumbral imaging system[J]. High Power Laser and Particle Beams, 2012, 24(08): 1826-1830. doi: 10.3788/HPLPB20122408.1826
    [9]xu tao, wang feng, peng xiaoshi, liu shenye. Imaging velocity interferometer system for any reflector based on SG-Ⅲ prototype laser facility[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [10]liu lifeng, xiao shali, qian jiayu, liu shenye, wei minxi, chen bolun. Monochromatic backlight imaging on Z-pinch facility[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [11]yu bo, ying yangjun, xu haibo. Effect of scattered neutrons on point spread function in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [12]zhang xueshuang, zou yubin, lu yuanrong, tang guoyou, li hang, wen weiwei, wang sheng. Simulation of coded neutron source imaging by visible light[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [13]hao yi-dan, miao wen-yong, zhao zong-qing, yuan yong-teng. Analytic calculation of ellipticity error effect in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [14]liu yuan-qiong, gao dang-zhong, liu li-xiang, luo qing, ye cheng-gang. Phase-contrast imaging with micro-focus X-ray source[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [15]liu dong-jian, tang chang-huan, zhao zong-qing, dong jian-jun, an zhu. Image reconstruction technique for neutron penumbra imaging[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [16]zhao zong-qing, ding yong-kun, liu dong-jian, tang chang-huan, wen shu-huai, pu yi-kang. Numerical simulation of neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [17]zheng zhi-jian, cao lei-feng, zhang bao-han, ding yong-kun, jiang shao-en, li chao guang. Primary investigation of X-ray tomography with Gabor zone plate encode holography technique[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
    [18]cao lei feng, zheng zhi jian, ding yong kun, yu yan ning, li chao guang. Investigation of Xray ring aperture coded imaging technique[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.8 %FULLTEXT: 15.8 %META: 81.7 %META: 81.7 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %Canton: 0.1 %Canton: 0.1 %China: 0.4 %China: 0.4 %India: 0.1 %India: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %United States: 0.5 %United States: 0.5 %[]: 0.1 %[]: 0.1 %上海: 1.3 %上海: 1.3 %中山: 0.1 %中山: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %北京: 14.2 %北京: 14.2 %北海: 0.1 %北海: 0.1 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.2 %太原: 0.2 %安康: 0.2 %安康: 0.2 %宣城: 0.3 %宣城: 0.3 %宿迁: 0.2 %宿迁: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.7 %张家口: 0.7 %成都: 0.4 %成都: 0.4 %扬州: 0.1 %扬州: 0.1 %新乡: 0.2 %新乡: 0.2 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.7 %杭州: 0.7 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %洛阳: 0.2 %洛阳: 0.2 %淮安: 0.2 %淮安: 0.2 %深圳: 1.0 %深圳: 1.0 %湖州: 0.2 %湖州: 0.2 %漯河: 1.1 %漯河: 1.1 %玉林: 0.2 %玉林: 0.2 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 15.0 %芒廷维尤: 15.0 %芝加哥: 0.3 %芝加哥: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 52.4 %西宁: 52.4 %西安: 0.7 %西安: 0.7 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.9 %郑州: 0.9 %重庆: 0.4 %重庆: 0.4 %长沙: 0.3 %长沙: 0.3 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.1 %青岛: 0.1 %韩国蔚山: 0.2 %韩国蔚山: 0.2 %其他CantonChinaIndiaKorea Republic ofUnited States[]上海中山乌鲁木齐北京北海十堰南京台州合肥呼和浩特哥伦布嘉兴天津太原安康宣城宿迁广州张家口成都扬州新乡昆明普洱杭州桃园武汉洛阳淮安深圳湖州漯河玉林石家庄福州秦皇岛绵阳芒廷维尤芝加哥衡阳衢州西宁西安贵港贵阳运城郑州重庆长沙阳泉青岛韩国蔚山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1322) PDF downloads(269) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return