Li Shuwang, Shao Shiyong, Mei Haiping, et al. Photo-thermal interferometry phase generation carrier of aerosol absorption[J]. High Power Laser and Particle Beams, 2016, 28: 041001. doi: 10.11884/HPLPB201628.121001
Citation: Gao Yang, Li Junru. Cooperative multi-physics simulation on self-heating effect of capacitive RF MEMS switch[J]. High Power Laser and Particle Beams, 2016, 28: 064108. doi: 10.11884/HPLPB201628.064108

Cooperative multi-physics simulation on self-heating effect of capacitive RF MEMS switch

doi: 10.11884/HPLPB201628.064108
  • Received Date: 2015-10-22
  • Rev Recd Date: 2015-12-09
  • Publish Date: 2016-06-15
  • The self-heating effect of the capacitive RF MEMS switch is caused by increasing incident power of the RF signal, which leads to deformation of the membrane. Thus, the air gap of the switch is changed. Eventually the drift of the actuation voltage of the switch is prompted, which seriously affect the reliability of the switch. Because the failure mechanisms of self-heating effect involves complex multi-physics coupling, the failure mechanisms are analysed and the failure modes are described by proposing the electromagnetic-thermo-mechanic multi-physics cooperative simulation method. Firstly, the dissipation power of the membrane under different incident power is got by constructing the electromagnetic simulation model of the switch in HFSS, which is taken as a heat source. Then the distribution of the surface temperature of the membrane is got by constructing the thermal simulation model of the switch in ePhysics, which is taken as a load. Next, the deformation behavior model of the switch is obtained by constructing the stress simulation model of the switch in ePhysics. At last, according to the change of the air gap caused by deformation, the failure prediction model of the drift of the actuation voltage is obtained. Taking a typical capacitive RF MEMS switch with rectangular membrane geometry for an instance, the distribution along the edge of the length of the surface current density of the membrane is got with this method. And the temperature gradually reduces along the edge of the length, with the highest temperature in the center and the lowest at the anchor. It is found that the maximum deformation point of the membrane appears on the edges of the long side. And the deformation presents a saddle surface. The linear relationship of the drift between the actuation voltage of the switch and the incident power (0-5 W) of the RF signal is fitted by getting maximum deformation value of the membrane under different temperature incident power (0-5 W). The effectiveness of the proposed method is proved by comparing with the measured data of the references.
  • Relative Articles

    [1]Lu Feng, Wang Zhenzhong, Huang Xuepeng, Lei Pengli. Modal analysis and mid-spatial-frequency errors suppression of 6-DOF bonnet polishing robot[J]. High Power Laser and Particle Beams, 2022, 34(11): 119001. doi: 10.11884/HPLPB202234.220013
    [2]Xiao Jing, Wang Haiyang, Xie Linshen, Cheng Le, Sun Chuyu, Shi Ling. Adaptability analysis and optimization design of modular Marx generator in mechanical environment[J]. High Power Laser and Particle Beams, 2022, 34(4): 045001. doi: 10.11884/HPLPB202234.210344
    [3]Wang Keying, Fan Xuanhua, Chen Xueqian, Niu Hongpan. Random vibration response analysis of Shenguang laser facility component based on PANDA platform[J]. High Power Laser and Particle Beams, 2020, 32(1): 011021. doi: 10.11884/HPLPB202032.190269
    [4]Liu Zhiyong, Zeng Herong, Wang Shaohua, Guo haibing, Ma jimin. Finite element analysis of subcritical energy blanket for uranium-based fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2018, 30(3): 036001. doi: 10.11884/HPLPB201830.170099
    [5]Hu Jie, Fan Xuanhua, Chen Xueqian. Simplified modeling of opto-mechanical structure based on dynamic stiffness equivalence[J]. High Power Laser and Particle Beams, 2017, 29(09): 092002. doi: 10.11884/HPLPB201729.170103
    [6]Gao Yang, Zhou Bin, He Yi, He Wanjing. Modeling and simulation on film bulk acoustic resonator with silicon oxide temperature-compensated layer[J]. High Power Laser and Particle Beams, 2015, 27(01): 014103. doi: 10.11884/HPLPB201527.014103
    [7]Liu Zhiyong, Li Zhenghong, Huang Hongwen, Zeng Herong, Wang Shaohua. Finite element analysis of ITER magnet support structure[J]. High Power Laser and Particle Beams, 2015, 27(01): 016013. doi: 10.11884/HPLPB201527.016013
    [8]Zhang Jianghua, Yang Hanwu, Zhang Hua, Tian Xiwen, Liang Bo, Li Song. Constant current charging process of MV-level Marx generator[J]. High Power Laser and Particle Beams, 2012, 24(04): 903-906. doi: 10.3788/HPLPB20122404.0903
    [9]jiang zhiqiang, du hanwen. Mechanical analysis and optimization for taper mechanism of in-vacuum undulator[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [10]chen xueqian, feng jiaquan, xu yuanli. Stability reallocation of large solid state laser based on finite element analysis[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [11]chen ming-jun, pang qi-long, liu xin-yan. Finite element analysis on influence of micro-nano machined surface impurity on optical performance of crystal[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [12]xu gang, zhang jin-qi, zhang xian-fu, yang zhou-bing, meng fan-bao, tang chuan-xiang. Electrical insulation design and numerical simulation analysis of 1 MV compact repetitive Marx generator[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [13]zhang li-sha, xu hong. Influence of oxygen partial pressure on HfO2 residual stresses and its finite element analysis[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
    [14]hou li-fei, yi rong-qing, du hua-bing, liu shen-ye. Structure design and finite-element analysis of multilayer-mirror soft X-ray energy spectrometer[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [15]huang hong-bin, li jing-zhen, gong xiang-dong, sun feng-shan, ai yue-xia, he tie-feng. Modal analysis of rotating mirror clipped by the elastic bearings for ultra-high speed photography[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [16]zhang jun-wei, feng bin, zhou yi, wang shi-long, xiang yong. Finite element analysis on ambient thermal stability of large aperture optical element[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]wang jin-shan, zhu yu-qun, jiang chao. Finite element analysis of heat transfer in hollow micro-sphere filled with ICF fuel[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [18]cao ding-xiang, zheng wan-guo, he shao-bo, yuan xiao-dong, yu hai-wu, xu mei-jian, cai zhen. Finite element analysis on thermal effect of heat capacity laser disk[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [19]qi wen-zong, huang wei, zhang bin, cai bang-wei, xiong sheng-ming, . Finite element analysis of thermal distortion of infrared CW laser reflectors[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
    [20]yu de-li, sang feng-ting, jin yu-qi, sun yi-zhu. Finite Element Analysis of the Mirror in High-energy Density Laser Resonator[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(2)

    1. 吴刚,贾伟,王海洋,谢霖燊,陈志强,郭帆,吴伟,冯寒亮. 高空核电磁脉冲模拟器研制进展. 中国科学:物理学 力学 天文学. 2023(07): 97-109 .
    2. 张超,陈焕红,刘雪峰,石志成,张艾. 双级升压高速电光调Q驱动电路设计. 航天返回与遥感. 2023(05): 65-71 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.3 %FULLTEXT: 22.3 %META: 76.1 %META: 76.1 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %其他: 1.4 %其他: 1.4 %China: 1.9 %China: 1.9 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Japan: 0.2 %Japan: 0.2 %Koesan: 0.1 %Koesan: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.2 %Pakistan: 0.2 %Rajahmundry: 0.7 %Rajahmundry: 0.7 %Russian Federation: 0.2 %Russian Federation: 0.2 %Serbia: 0.4 %Serbia: 0.4 %Turkey: 0.3 %Turkey: 0.3 %United States: 0.1 %United States: 0.1 %[]: 0.8 %[]: 0.8 %上海: 1.6 %上海: 1.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %京畿道: 0.1 %京畿道: 0.1 %保定: 0.2 %保定: 0.2 %兰州: 0.1 %兰州: 0.1 %北京: 3.5 %北京: 3.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南昌: 0.1 %南昌: 0.1 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔科夫: 0.7 %哈尔科夫: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %圣保罗: 0.1 %圣保罗: 0.1 %多拉杜斯: 0.1 %多拉杜斯: 0.1 %天安: 0.3 %天安: 0.3 %天津: 0.1 %天津: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.1 %宣城: 0.1 %广州: 0.5 %广州: 0.5 %张家口: 0.2 %张家口: 0.2 %徐州: 0.1 %徐州: 0.1 %成都: 0.6 %成都: 0.6 %扬州: 0.1 %扬州: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %武汉: 0.9 %武汉: 0.9 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泉州: 0.1 %泉州: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %漯河: 0.3 %漯河: 0.3 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 1.1 %绵阳: 1.1 %罗奥尔凯埃: 0.3 %罗奥尔凯埃: 0.3 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 47.8 %西宁: 47.8 %西安: 1.4 %西安: 1.4 %贵阳: 0.4 %贵阳: 0.4 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 1.4 %运城: 1.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.2 %重庆: 0.2 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %首尔: 0.1 %首尔: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他ChinaIndiaIran (ISLAMIC Republic Of)JapanKoesanKorea Republic ofPakistanRajahmundryRussian FederationSerbiaTurkeyUnited States[]上海中山临汾丹东京畿道保定兰州北京十堰南京南昌台北台州合肥呼和浩特咸阳哈尔科夫哥伦布圣保罗多拉杜斯天安天津宜昌宣城广州张家口徐州成都扬州晋城普洱杭州武汉沈阳沧州泉州深圳温州漯河烟台石家庄秦皇岛绵阳罗奥尔凯埃美国伊利诺斯芝加哥芒廷维尤苏州衡水衢州西宁西安贵阳达尔斯运城邯郸郑州重庆长沙长治首尔香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1091) PDF downloads(321) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return