Liu Shenggang, Tao Tianjiong, Ma Heli, et al. Method of big step height measurements based on white light frequency domain interferometry[J]. High Power Laser and Particle Beams, 2015, 27: 091007. doi: 10.11884/HPLPB201527.091007
Citation: Du Liqun, Yang Tong, Zhao Ming, et al. Improvement of microfluidic chip mould thickness uniformity by ultrasonic agitation during electroforming process[J]. High Power Laser and Particle Beams, 2016, 28: 064111. doi: 10.11884/HPLPB201628.064111

Improvement of microfluidic chip mould thickness uniformity by ultrasonic agitation during electroforming process

doi: 10.11884/HPLPB201628.064111
  • Received Date: 2015-11-13
  • Rev Recd Date: 2015-12-18
  • Publish Date: 2016-06-15
  • The electroforming microfluidic chip mould faces the problem of uneven thickness,which influences the dimensional accuracy and performance of the mould, and increases the production cost. With the aim of fabricating a microfluidic chip mould with uniform thickness, electroforming with ultrasonic agitation is investigated to improve the thickness uniformity of the mould. Firstly, numerical simulation is performed using COMSOL multiphysics software to analyze the thickness distribution of the mould after 2 h electroforming. And based on the simulation result, a photomask is designed. Secondly, with the photomask, electroforming experiments are carried out to study how ultrasonic agitation affects the thickness uniformity of the mould. It is found that the ultrasonic agitation can improve the thickness uniformity of the mould. With 200 W ultrasonic agitation, the effect of ultrasonic frequency on the thickness uniformity increases in the order of 200 kHz>80 kHz>120 kHz. And with 200 kHz ultrasonic agitation, the effect of ultrasonic power on the thickness uniformity increases in the order of 500 W>200 W>100 W. Compared with the thickness uniformity without ultrasonic agitation, with 200 kHz and 500 W ultrasonic agitation, the thickness uniformity of the mould is increased by about 30%.
  • Relative Articles

    [1]Liu Xiaoli, Qi Jianmin, Chu Yanyun. Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2023, 35(5): 052002. doi: 10.11884/HPLPB202335.220280
    [2]Huang Xianbin, Xu Qiang, Wang Kunlun, Ren Xiaodong, Zhou Shaotong, Zhang Siqun, Cai Hongchun, Wang Guilin, Zhang Zhaohui, Jia Yuesong, Sun Qizhi, Liu Pan, Yuan Jianqiang, Li Hongtao, Wang Meng, Xie Weiping, Deng Jianjun. Progress on high energy density physics experiments with pinch devices[J]. High Power Laser and Particle Beams, 2021, 33(1): 012002. doi: 10.11884/HPLPB202133.200128
    [3]Gao Shasha, Wu Xiaojun, He Zhibing, He Xiaoshan, Wang Tao, Zhu Fanghua, Zhang Zhanwen. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001. doi: 10.11884/HPLPB202032.200039
    [4]Xiao Delong, Ding Ning, Wang Guanqiong, Wang Xiaoguang, Li Chenguang, Mao Chongyang. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 2020, 32(9): 092005. doi: 10.11884/HPLPB202032.200094
    [5]Liu Xudong, Yang Yi, Bai Li, Yang Bo, Niu Gao, Yu Bin, Zhu Ye, Zhou Xiuwen. Preparation of continuous W wire with modulation diameter shape for Z-pinch[J]. High Power Laser and Particle Beams, 2016, 28(05): 054101. doi: 10.11884/HPLPB201628.054101
    [6]Yang Yi, Yang Bo, Liu Xudong, Niu Gao, Yu Bin, Zhu Ye, Zhou Xiuwen. Analysis of deviation sources and precision of cylindrical foam assembly in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2016, 28(11): 112002. doi: 10.11884/HPLPB201628.160118
    [7]Huang Xianbin, Ren Xiaodong, Dan Jiakun, Wang Kunlun, Zhou Shaotong, Xu Qiang, Zhang Siqun, Li Jing, Cai Hongchun, Ouyang Kai, Wei Bing, Ji Ce, Feng Shuping, Wang Meng, Xie Weiping, Deng Jianjun, Zhou Xiuwen, Yang Yi. Characteristics of tungsten wire array Z-pinch implosion radiation on PTS[J]. High Power Laser and Particle Beams, 2016, 28(02): 025006. doi: 10.11884/HPLPB201628.025006
    [8]Xie Jun, Huang Yanhua, Li Zhaoyang, Zhang Haijun, Li Guo, Song Chengwei, Wei Sheng, Zhang Zhaorui. Lapping technique for titanium spherical surface[J]. High Power Laser and Particle Beams, 2015, 27(07): 072002. doi: 10.11884/HPLPB201527.072002
    [9]Li Bo, Zhang Zhanwen, He Zhibing, Gao Dangzhong, Chen Sufen, He Xiaoshan, Zhao Xuesen, Qi Xiaobo, Liu Yiyang, Wang Zongwei, Liu Meifang, Ma Xiaojun, Meng Jie, Feng Jianhong, Su Lin, Chen Yongping, Liu Xiangdong, Li Jing, Li Jie. Preparation and characterization of inertial confinement fusion capsules[J]. High Power Laser and Particle Beams, 2015, 27(03): 032024. doi: 10.11884/HPLPB201527.032024
    [10]Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2014, 26(09): 090201. doi: 10.11884/HPLPB201426.090201
    [11]Duan Shuchao, Zhang Zhengwei, Li Jing, Dan Jiakun, Zhou Shaotong, Zhang Siqun, Cai Hongchun, Ren Xiaodong, Huang Xianbin. Two-dimensional numerical investigation of the dynamic ablation of Z-pinch wire-array[J]. High Power Laser and Particle Beams, 2014, 26(04): 045050. doi: 10.11884/HPLPB201426.045050
    [12]Li Zhenghong, Huang Hongwen, Wang Zhen, Chen Xiaojun, Qi Jianmin, Guo Haibing, Ma Jimin, Xiao Chengjian, Chu Yanyun, Zhou Lin. Conceptual design of Z-pinch driven fusion-fission hybrid power reactor[J]. High Power Laser and Particle Beams, 2014, 26(10): 100202. doi: 10.11884/HPLPB201426.100202
    [13]Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097. doi: 3091
    [14]Yang Bo, Zhou Xiuwen, He Wei, Liu Xudong, Yu Bin, Zhu Ye. Adhesives for assemblage of Z-pinch dynamic hohlraum load[J]. High Power Laser and Particle Beams, 2013, 25(02): 389-393. doi: 10.3788/HPLPB20132502.0389
    [15]Shi Zhan, Ge Liqin. Fabrication of polyacrylonitrile microcapsule for inertial confinement fusion based on microfluidic device[J]. High Power Laser and Particle Beams, 2013, 25(08): 1979-1983. doi: 10.3788/HPLPB20132508.1979
    [16]Qi Xiaobo, Zhang Zhanwen, Gao Cong, Li Bo, Wei Sheng. Permeability of hollow glass microspheres for inertial confinement fusion targets by dried-gel method[J]. High Power Laser and Particle Beams, 2012, 24(10): 2365-2370. doi: 10.3788/HPLPB20122410.2365
    [17]zhou xiuwen, liu xudong, yang bo, zhong hua, yu bin, bai li, wu weidong, tang yongjian. Self-adaptivity of columned dynamic hohlraums for Z-pinch on 4 MA drivers[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [18]yang bo, zhou xiuwen, he wei, liu xudong, yu bin, wu weidong. Relaxation property of polymer filaments used in Z-pinch target[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- .
    [19]cai hong-chun, chernenko a s, korolev v d, ustroev g i, ivanov m i. Dynamics of soft X-ray radiation spectra of imploding wire arrays on the S—300 pulsed power generator[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [20]duan bin, li yue-ming, fang quan-yu, zhang ji-yan. Calculation of temperature and density of plasmas in target pellet of ICF experiment[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
  • Cited by

    Periodical cited type(2)

    1. 祝德充,随艳峰,岳军会,彭月梅,刘佳明,曹建社. 高能光源增强器束流横向尺寸测量系统设计. 强激光与粒子束. 2021(04): 85-89 . 本站查看
    2. 王洪建,肖沙里,林睿,蒋昀赟. 基于Denauit-Hartenbery的高分辨Kirkpatrick-Baez镜成像结构设计与控制方法研究. 南京信息工程大学学报(自然科学版). 2020(03): 341-346 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.4 %FULLTEXT: 26.4 %META: 61.7 %META: 61.7 %PDF: 11.9 %PDF: 11.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 0.2 %其他: 0.2 %Falls Church: 0.1 %Falls Church: 0.1 %Kao-sung: 0.1 %Kao-sung: 0.1 %Matawan: 0.1 %Matawan: 0.1 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.1 %United States: 0.1 %Westbury: 0.2 %Westbury: 0.2 %Wixom: 0.2 %Wixom: 0.2 %上海: 2.0 %上海: 2.0 %东京: 0.5 %东京: 0.5 %东京都: 0.2 %东京都: 0.2 %东莞: 0.2 %东莞: 0.2 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %保定: 0.2 %保定: 0.2 %兰州: 0.7 %兰州: 0.7 %内江: 0.8 %内江: 0.8 %北京: 4.5 %北京: 4.5 %十堰: 0.1 %十堰: 0.1 %南京: 1.0 %南京: 1.0 %南充: 0.3 %南充: 0.3 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 0.5 %台州: 0.5 %吉林: 0.2 %吉林: 0.2 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈尔滨: 0.9 %哈尔滨: 0.9 %大连: 0.8 %大连: 0.8 %天津: 1.7 %天津: 1.7 %太原: 0.2 %太原: 0.2 %安康: 0.3 %安康: 0.3 %定西: 0.2 %定西: 0.2 %宣城: 0.1 %宣城: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 0.4 %广州: 0.4 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.2 %延安: 0.2 %张家口: 0.5 %张家口: 0.5 %悉尼: 0.2 %悉尼: 0.2 %成都: 3.7 %成都: 3.7 %扬州: 0.2 %扬州: 0.2 %新德里: 0.3 %新德里: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 0.7 %昆明: 0.7 %晋城: 0.1 %晋城: 0.1 %普洱: 0.2 %普洱: 0.2 %朴次茅斯: 0.3 %朴次茅斯: 0.3 %杭州: 0.5 %杭州: 0.5 %柳州: 0.1 %柳州: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.2 %沈阳: 0.2 %法拉盛: 0.3 %法拉盛: 0.3 %洛桑: 0.1 %洛桑: 0.1 %济南: 0.3 %济南: 0.3 %涅任: 0.4 %涅任: 0.4 %淄博: 0.2 %淄博: 0.2 %深圳: 0.7 %深圳: 0.7 %温尼伯: 0.1 %温尼伯: 0.1 %湖州: 0.8 %湖州: 0.8 %漯河: 0.9 %漯河: 0.9 %牛津: 0.5 %牛津: 0.5 %盖瑟斯堡: 0.1 %盖瑟斯堡: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽伦堡: 0.2 %纽伦堡: 0.2 %纽瓦克: 0.2 %纽瓦克: 0.2 %绵阳: 2.6 %绵阳: 2.6 %罗马: 0.3 %罗马: 0.3 %芒廷维尤: 38.1 %芒廷维尤: 38.1 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.6 %苏州: 0.6 %蚌埠: 0.1 %蚌埠: 0.1 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 10.3 %西宁: 10.3 %西安: 2.3 %西安: 2.3 %诺沃克: 4.4 %诺沃克: 4.4 %贵阳: 0.4 %贵阳: 0.4 %赣州: 0.5 %赣州: 0.5 %运城: 1.4 %运城: 1.4 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.4 %邯郸: 0.4 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.3 %郑州: 0.3 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.4 %重庆: 0.4 %长春: 0.1 %长春: 0.1 %长沙: 0.5 %长沙: 0.5 %阿克伦: 0.3 %阿克伦: 0.3 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他Falls ChurchKao-sungMatawanSeattleUnited StatesWestburyWixom上海东京东京都东莞临汾丹东乌鲁木齐保定兰州内江北京十堰南京南充南昌南通厦门台州吉林呼和浩特哈尔滨大连天津太原安康定西宣城常州常德广州廊坊延安张家口悉尼成都扬州新德里无锡昆明晋城普洱朴次茅斯杭州柳州榆林武汉沈阳法拉盛洛桑济南涅任淄博深圳温尼伯湖州漯河牛津盖瑟斯堡石家庄秦皇岛纽伦堡纽瓦克绵阳罗马芒廷维尤芝加哥苏州蚌埠衢州襄阳西宁西安诺沃克贵阳赣州运城遵义邯郸邵阳郑州鄂州重庆长春长沙阿克伦马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1222) PDF downloads(408) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return