Liao Shibiao, Luo Tao, Xiao Runheng, et al. Breakthrough of 4 kW narrow linewidth linearly polarized laser based on a fiber oscillator laser and a homemade Yb-doped fiber[J]. High Power Laser and Particle Beams, 2023, 35: 091004. doi: 10.11884/HPLPB202335.230258
Citation: Wang Kunlun, Ren Xiaodong, Huang Xianbin, et al. Flat spectral response XRD for diagnosing soft X-ray flux on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 045009. doi: 10.11884/HPLPB201628.125009

Flat spectral response XRD for diagnosing soft X-ray flux on PTS

doi: 10.11884/HPLPB201628.125009
  • Received Date: 2015-09-08
  • Rev Recd Date: 2015-11-02
  • Publish Date: 2016-04-15
  • In Z-pinch experiments on Primary Test Stand, a specially configured flat spectral response X-ray diode (FSR-XRD) was used to diagnose X-ray flux, which utilized a gold cathode XRD and a compounded gold filter to give rise to a nearly flat spectral response in photon energy range of 0.1-4 keV. To establish an absolute measurement of X-ray flux, each XRD and filter used was calibrated on beam lines 4B7B and 4B7A, Beijing synchrotron radiation facility. In typical experiments, uncertainty of X-ray power measurement inferred by FSR-XRD was 12%. In a single tungsten wire array Z-pinches experiment, diagnosed X-ray power exceeded 52 TW, energy was about 540 kJ. In dynamical hohlraum experiments, an FSR-XRD in the radial and an FSR-XRD in the axial were used to provide a time correlated measurement of X-ray pulse. In a typical dynamical hohlraum experiment, peak of axial X-ray power occurred before radial power by amount of about 1.2 ns.
  • Relative Articles

    [1]Chen Zhiqiang, Xie Linshen, Jia Wei, He Xiaoping, Tang Junping, Chen Weiqing. Development of a 3 MV transfer capacitor used in an electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2021, 33(9): 095001. doi: 10.11884/HPLPB202133.210195
    [2]Ma Yukuan, Chen Xiaoxu, Zhou Shouhuan, Feng Guoying, Zhou Hao, Liu Pengyu. All optical control of long period fiber grating based on graphene oxide[J]. High Power Laser and Particle Beams, 2020, 32(1): 011015. doi: 10.11884/HPLPB202032.190468
    [3]Shao Zhuqiang, Hu Zengrong, Guo Shaoxiong, Ni Yangyang, Li Yue, Zhang Yao, Chen Changjun, Wang Xiaonan. Numerical simulation of temperature field distribution for laser sintering graphene reinforced copper composites[J]. High Power Laser and Particle Beams, 2018, 30(3): 039001. doi: 10.11884/HPLPB201830.170366
    [4]Yuan Mingquan, Yang He, Zhang Zhaoyun, Xiong Zhuang. Fabrication of flexible graphene strain sensor based on PET substrate[J]. High Power Laser and Particle Beams, 2018, 30(3): 034101. doi: 10.11884/HPLPB201830.170423
    [5]Mo Jun, Feng Guoying, Liao Yu, Yang Mochou, Zhou Shouhuan. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30(8): 081003. doi: 10.11884/HPLPB201830.180079
    [6]Li Yanglong, Wu Lingyuan, Shen Huanhuan, Liu Guodong, Wang Weiping. Patterning of graphene by light field modulated nanosecond laser[J]. High Power Laser and Particle Beams, 2018, 30(12): 129001. doi: 10.11884/HPLPB201830.180154
    [7]Hu Zengrong, Yao Bo, Tong Guoquan, Chen Changjun, Zhang Min, Zheng Zushan, Xu Jiale, Guo Huafeng, Wang Xiaonan. Tribological properties of laser cladded Gr-CBN-Ni coating[J]. High Power Laser and Particle Beams, 2017, 29(02): 029001. doi: 10.11884/HPLPB201729.160372
    [8]Wu Lingyuan, Li Yanglong, Liu Guodong, Wang Weiping. 1064 nm nanosecond laser induced damage effect on graphene[J]. High Power Laser and Particle Beams, 2015, 27(08): 081009. doi: 10.11884/HPLPB201527.081009
    [9]Hu Zengrong, Tong Guoquan, Zhang Chao, Guo Huafeng, Xu Jiale, Chen Changjun. Corrosion resistance and hardness of laser sintered graphene-copper nanocomposites[J]. High Power Laser and Particle Beams, 2015, 27(09): 099001. doi: 10.11884/HPLPB201527.099001
    [10]Li Yanna, Tang Yue, Wei Liping, Wang Yonghua, Liu Yaoying, Xue Chenyang. SOI-ring waveguide-coupled double-layer graphene modulator[J]. High Power Laser and Particle Beams, 2015, 27(02): 024109. doi: 10.11884/HPLPB201527.024109
    [11]Wang Wenjuan, Li Hua, Li Zhiwei, Tong Yong, Lin Fuchang. Lifetime improvement of metallized film capacitors by inner pressure strengthening[J]. High Power Laser and Particle Beams, 2014, 26(04): 045015. doi: 10.11884/HPLPB201426.045015
    [12]Yuan Lei, Fu Zhibing, Chang Lijuan, Yang Xi, Zhang Houqiong, Wang Chaoyang, Tang Yongjian. Preparation and performance of MnO2/graphene composite electrode materials[J]. High Power Laser and Particle Beams, 2014, 26(11): 114102. doi: 10.11884/HPLPB201426.114102
    [13]Fu Zhibing, Yuan Lei, Jiao Xingli, Yang Xi, Zhang Houqiong, Wang Chaoyang. Preparation and electrochemical performance of carbon aerogels dried at ambient pressure[J]. High Power Laser and Particle Beams, 2013, 25(12): 3235-3238. doi: 3235
    [14]Li Zhiwei, Lin Fuchang, Li Hua, Chen Yaohong, Lü Fei, Zhang Miao, Liu De. Pulsed capacitors in vacuum[J]. High Power Laser and Particle Beams, 2012, 24(05): 1229-1233. doi: 10.3788/HPLPB20122405.1229
    [15]Liu Xichuan, Yuan Lei, Feng Hao, Fu Zhibing, Wang Chaoyang, Sun Weiguo, Tang Yongjian. Preparation and performance of nitrogen-doped carbon aerogels as electrode materials[J]. High Power Laser and Particle Beams, 2012, 24(12): 2848-2852. doi: 10.3788/HPLPB20122412.2848
    [16]Zhang Hui, Chen Yu, Wang Zhiteng, Zhao Chujun, Zhang Han. Wavelength-tunable passively Q-switched erbium-doped fiber laser with graphene-based saturable absorber[J]. High Power Laser and Particle Beams, 2012, 24(12): 2807-2810. doi: 10.3788/HPLPB20122412.2807
    [17]yuan lei, yuan qiuyue, wang chaoyang, fu zhibing, zhang houqiong, tang yongjian. Preparation and performance of carbon aerogel and activated carbon aerogel as electrode materials[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [18]li hua, chen yaohong, lin fuchang, peng bo. Lifetime characteristics of metallized film pulsed capacitors[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [19]zhu zhi-fang, lin fu-chang, dai ling. Performance of high energy density ceramic capacitor[J]. High Power Laser and Particle Beams, 2004, 16(10): 0- .
    [20]lin fu-chang, dai xin, xu zhi-an, li jin, yao zong-gan. High density capacitors[J]. High Power Laser and Particle Beams, 2003, 15(01): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.3 %FULLTEXT: 27.3 %META: 61.8 %META: 61.8 %PDF: 10.9 %PDF: 10.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.9 %其他: 6.9 %其他: 0.6 %其他: 0.6 %Austin: 0.1 %Austin: 0.1 %China: 0.2 %China: 0.2 %Falls Church: 0.6 %Falls Church: 0.6 %Japan: 0.6 %Japan: 0.6 %Rochester: 0.2 %Rochester: 0.2 %Seattle: 0.1 %Seattle: 0.1 %Taichung: 0.2 %Taichung: 0.2 %United States: 0.1 %United States: 0.1 %Westbury: 0.1 %Westbury: 0.1 %上海: 2.5 %上海: 2.5 %东莞: 0.2 %东莞: 0.2 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %休斯敦: 0.1 %休斯敦: 0.1 %保定: 0.5 %保定: 0.5 %信阳: 0.2 %信阳: 0.2 %兰州: 0.2 %兰州: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 2.5 %北京: 2.5 %南京: 0.3 %南京: 0.3 %南安普敦: 0.2 %南安普敦: 0.2 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %台州: 0.8 %台州: 0.8 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %大阪府: 0.2 %大阪府: 0.2 %天津: 1.3 %天津: 1.3 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %宣城: 0.4 %宣城: 0.4 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.2 %常州: 0.2 %常德: 0.3 %常德: 0.3 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.0 %广州: 1.0 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.1 %张家口: 1.1 %德黑兰: 0.8 %德黑兰: 0.8 %恩施: 0.2 %恩施: 0.2 %成都: 2.3 %成都: 2.3 %扬州: 0.9 %扬州: 0.9 %新加坡: 0.2 %新加坡: 0.2 %无锡: 0.4 %无锡: 0.4 %昆明: 0.6 %昆明: 0.6 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.3 %杭州: 1.3 %棉兰: 0.2 %棉兰: 0.2 %武汉: 3.7 %武汉: 3.7 %沈阳: 0.2 %沈阳: 0.2 %波特兰: 1.0 %波特兰: 1.0 %洛阳: 0.6 %洛阳: 0.6 %济南: 0.4 %济南: 0.4 %深圳: 2.2 %深圳: 2.2 %温州: 0.6 %温州: 0.6 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %漯河: 2.3 %漯河: 2.3 %漳州: 0.1 %漳州: 0.1 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %索非亚: 0.1 %索非亚: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 1.5 %绵阳: 1.5 %芒廷维尤: 32.7 %芒廷维尤: 32.7 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.7 %衢州: 0.7 %西宁: 9.5 %西宁: 9.5 %西安: 0.9 %西安: 0.9 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 4.4 %诺沃克: 4.4 %贵阳: 0.4 %贵阳: 0.4 %费利蒙: 0.1 %费利蒙: 0.1 %达州: 0.2 %达州: 0.2 %运城: 1.4 %运城: 1.4 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.3 %重庆: 0.3 %金华: 0.1 %金华: 0.1 %釜山: 0.3 %釜山: 0.3 %长春: 0.2 %长春: 0.2 %长沙: 1.3 %长沙: 1.3 %阿坝: 0.2 %阿坝: 0.2 %青岛: 0.1 %青岛: 0.1 %黄石: 0.2 %黄石: 0.2 %其他其他AustinChinaFalls ChurchJapanRochesterSeattleTaichungUnited StatesWestbury上海东莞临汾丹东丽水乌鲁木齐休斯敦保定信阳兰州加利福尼亚州北京南京南安普敦南昌南通台州合肥呼和浩特哈尔滨哥伦布嘉兴大连大阪府天津威海宁波宣城巴音郭楞常州常德平顶山广州廊坊张家口德黑兰恩施成都扬州新加坡无锡昆明晋城普洱朝阳杭州棉兰武汉沈阳波特兰洛阳济南深圳温州湖州湘潭漯河漳州烟台石家庄秦皇岛索非亚纽约绵阳芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安西雅图诺沃克贵阳费利蒙达州运城遵义邯郸郑州鄂州重庆金华釜山长春长沙阿坝青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1138) PDF downloads(303) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return