Li Haibo, Shen Li, Zhai Jun, et al. Nanosecond grade edge chopper power supply system of high current proton accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 085001. doi: 10.11884/HPLPB201729.170086
Citation:
Ye Hong, Lei Linping, Yu Wenxin, et al. Microstructure and thermal fatigue resistance of Co-based alloy coating on H13 steel by laser cladding[J]. High Power Laser and Particle Beams, 2017, 29: 029002. doi: 10.11884/HPLPB201729.160367
Li Haibo, Shen Li, Zhai Jun, et al. Nanosecond grade edge chopper power supply system of high current proton accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 085001. doi: 10.11884/HPLPB201729.170086
Citation:
Ye Hong, Lei Linping, Yu Wenxin, et al. Microstructure and thermal fatigue resistance of Co-based alloy coating on H13 steel by laser cladding[J]. High Power Laser and Particle Beams, 2017, 29: 029002. doi: 10.11884/HPLPB201729.160367
Thermal fatigue failure is easy to occur on H13 steel surface under working condition, the Co-based coating was fabricated by Nd:YAG laser on H13 steel. Microstructure, distribution of elements and composition of phases were investigated by means of optical microscope(OM), scanning electron microscope(SEM), energy dispersive spectrometer(EDS) and X-ray diffraction(XRD).The effect of thermal fatigue on microhardness of Co-based coating and quenching-tempering H13 steel was tested by microhardness tester. The results show that: From bottom to the surface of Co-based coating, planar crystal, cellular crystal, dendrite crystal and equiaxed crystal were observed; Co-based alloy coating is mainly composed of -Co and M23C6, M2O3 and M3O4(M=Fe, Co, Cr)are produced on the surface of coating after thermal cycling; Microhardness of Co-based coating which could reach 706HV0.2, decreased gradually. After 1000 thermal cycles, the microhardness decreases of Co-based alloy coating and H13 steel are 24.4% and 37.7%, respectively; The surface of the Co-based coating has no thermal cracks, while that of H13 steel has a large number of thermal cracks; Cr2O3 oxide film is formed on Co-based alloy coating, which makes thermal fatigue resistance of coating better than that of H13 steel.
Li Haibo, Shen Li, Zhai Jun, et al. Nanosecond grade edge chopper power supply system of high current proton accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 085001. doi: 10.11884/HPLPB201729.170086
Li Haibo, Shen Li, Zhai Jun, et al. Nanosecond grade edge chopper power supply system of high current proton accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 085001. doi: 10.11884/HPLPB201729.170086