Yang Hang, He Jianguo, Huang Wen, et al. Dynamic prediction of the shape of MRF removal function[J]. High Power Laser and Particle Beams, 2015, 27: 092011. doi: 10.11884/HPLPB201527.092011
Citation: Sun Fengju, Jiang Xiaofeng, Wei Hao, et al. Novel configuration linear transformer driver with multistages in series sharing common cavity shell[J]. High Power Laser and Particle Beams, 2017, 29: 025001. doi: 10.11884/HPLPB201729.160507

Novel configuration linear transformer driver with multistages in series sharing common cavity shell

doi: 10.11884/HPLPB201729.160507
  • Received Date: 2016-11-03
  • Rev Recd Date: 2016-12-07
  • Publish Date: 2017-02-15
  • Fast Linear Transformer Drivers (FLTD) can directly produce high-power pulse with peak voltage up to tens of megavolt, peak current up to tens of mega ampere, and rise time 70-200 ns, which are widely used in Z-pinch ICF (Inertial Confinement Fusion)/ IFE (Inertial Fusion Energy), X ray radiography, high power laser and high power microwave, and so on. With the development of high power FLTD drivers for Z-pinch ICF/IFE, it is resolved immediately that hundreds of thousands of high power gas switches should be triggered with accurate sequences. A creative topologic FLTD structure with multistages in series sharing induction cavity shell is presented and a novel trigger method achieving nearly ideal IVA triggering sequence is put forward, by which only one trigger pulse is imported to the novel FLTD cavity shell based on an unclosed cores brick and azimutal line in cavities realizing the gas switches triggering in synchronization. The circuit model and three-dimension electromagnetic model of the new structure of three-stage series FLTD sharing induction cavity shell are developed. The simulating results of the equivalent circuits and electromagnetic models demonstrate that the novel configuration FLTDs have the same output parameters and performances as the traditional FLTDs, and validate the possibility and practicability of the novel configuration FLTDs. Based on the novel configuration FLTD and the triggering method, it is hopeful to resolve the huge challenges and difficulties that high power FLTD drivers for Z-pinch ICF/IFE would have too much import triggering and charging cables and the serious requirements for acute triggering sequences of large-scale gas switches.
  • Relative Articles

    [1]Mi Zhikai, Nie Fengming, Huang Siling, Xue Feng. Predictive modeling of the surface pattern of double-sided polishing process of optical components[J]. High Power Laser and Particle Beams, 2024, 36(9): 091001. doi: 10.11884/HPLPB202436.240068
    [2]Yang Hang, Zhang Shuai, Zhang Yunfei, Huang Wen, He Jianguo. Fast calculation of polishing powder sedimentation characteristics in magnetorheological polishing area under gradient magnetic field based on Kahan linearization[J]. High Power Laser and Particle Beams, 2022, 34(8): 082002. doi: 10.11884/HPLPB202234.210353
    [3]Yang Hang, Yu Yumin, Zhang Yunfei, Huang Wen, He Jianguo. Relationship between the geometric characteristics of the polished area and the key parameters of the flow field creation[J]. High Power Laser and Particle Beams, 2021, 33(10): 101003. doi: 10.11884/HPLPB202133.210151
    [4]Lin Zewen, Wang Zhenzhong, Huang Xuepeng, Kong Liuwei. Influence of robotic structural deformation on bonnet polishing removal function[J]. High Power Laser and Particle Beams, 2021, 33(5): 051002. doi: 10.11884/HPLPB202133.200293
    [5]Yang Hang, Ma Dengqiu, Zhang Qiang, Liu Xiaoyong, Fan Wei, Zhang Yunfei, Huang Wen, He Jianguo. Novel fluid field analysis method for ultra-precision machining based on christopherson iteration[J]. High Power Laser and Particle Beams, 2019, 31(6): 062002. doi: 10.11884/HPLPB201931.180373
    [6]Yang Hang, Liu Xiaoyong, Ma Dengqiu, Zhang Yunfei, Huang Wen, He Jianguo. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31(2): 022001. doi: 10.11884/HPLPB201931.180340
    [7]Lei Pengli, Hou Jing, Wang Jian, Deng Wenhui, Zhong Bo. Smoothing of mid-spatial frequency errors by computer controlled surface processing[J]. High Power Laser and Particle Beams, 2019, 31(11): 111002. doi: 10.11884/HPLPB201931.190177
    [8]Fu Wenjing, Mi Shaogui, Zhang Rongzhu. Influence of uniformity of polishing particle size on material removal characteristics in fluid jet polishing[J]. High Power Laser and Particle Beams, 2018, 30(1): 011001. doi: 10.11884/HPLPB201830.170295
    [9]Jia Yang, Ji Fang, Zhang Yunfei, Huang Wen. Adaptive tool path of magnetorheological polishing based on discrete gradient clustering[J]. High Power Laser and Particle Beams, 2015, 27(12): 121008. doi: 10.11884/HPLPB201527.121008
    [11]Zhao Heng, Yan Dingyao, Cai Hongmei, Bao Zhenjun. Removal model of plane swinging polishing[J]. High Power Laser and Particle Beams, 2014, 26(03): 032009. doi: 10.3788/HPLPB201426.032009
    [12]Xie Lei, Zhang Yunfan, You Yunfeng, Ma Ping, Liu Yibin, Yan Dingyao. Calculation and simulation on mid-spatial frequency error in continuous polishing[J]. High Power Laser and Particle Beams, 2013, 25(12): 3307-3310. doi: 3307
    [13]Zhong Bo, Chen Xianhua, Wang Jian, Deng Wenhui, Xie Ruiqing, Yuan Zhigang, Liao Defeng. Controlling mid-spatial frequency error on 400 mm aperture window[J]. High Power Laser and Particle Beams, 2013, 25(12): 3287-3291. doi: 3287
    [14]Deng Wenhui, Tang Caixue, Chen Xianhua, Wang Jian, Zhong Bo. Path segment division and feed-rate solution in ion beam figuring[J]. High Power Laser and Particle Beams, 2013, 25(12): 3292-3296. doi: 3292
    [15]Qin Beizhi, Yang Liming, Zhu Rihong, Hou Jing, Yuan Zhigang, Zheng Nan, Tang Caixue, . Polishing parameters of magnetorheological finishing for high precision optical components[J]. High Power Laser and Particle Beams, 2013, 25(09): 2281-2286. doi: 10.3788/HPLPB20132509.2281
    [16]wan yongjian, shi chunyan, yuan jiahu, wu fan. Control method of polishing errors by dwell time compensation[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [17]zheng nan, li haibo, yuan zhigang, zhong bo. Control software development for magnetorheological finishing of large aperture optical elements[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [18]yang wei, guo yin-biao, xu qiao, li ya-guo. Edge effects on material removal amount in ultra precise polishing process[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [19]hou jing, xu qiao, lei xiang-yang, zhou li-shu, zhang qing-hua, wang jian. Removal function of computerized numerical controlled chemical polishing based on the Marangoni interface effect[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [20]zeng zhi-ge, deng jian-ming, li xiao-jin, ling ning, jiang wen-han. Investigation of deformation experiment for active polishing lap[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
  • Cited by

    Periodical cited type(14)

    1. 张伟,郭昆明. 冲击波预裂工艺技术在高地压矿井上覆硬岩层的工程实践. 现代矿业. 2024(01): 91-94 .
    2. 陆金波,贺宗鉴,朱鑫磊,黄昆. 基于晶闸管的放电冲击波油气增产装置研制. 科学技术与工程. 2024(05): 1885-1892 .
    3. 闫小兵,王秀龙,贺能,马正腾,张凤鹏. 金属丝电爆炸的电流波形特征及其破岩效果研究. 中国矿业. 2024(06): 210-217 .
    4. 冯国瑞,朱林俊,郭军,王朋飞,高瑞,文晓泽,樊一江,钱瑞鹏,米鑫程. 电脉冲循环冲击作用对花岗岩抗剪性能弱化研究. 中南大学学报(自然科学版). 2023(03): 785-796 .
    5. 王兆寒,张晨晖,于航,匡春霖,张凤鹏,彭建宇. 铜丝电爆炸载荷下红砂岩破裂行为实验. 有色金属(矿山部分). 2022(03): 36-41 .
    6. 秦勇,李恒乐,张永民,赵有志,赵锦程,邱爱慈. 基于地质–工程条件约束的可控冲击波煤层致裂行为数值分析. 煤田地质与勘探. 2021(01): 108-118+129 .
    7. 王巧智,苏延辉,江安,郑春峰,高波,张云飞. 可控冲击波增渗解堵技术实验研究. 天然气与石油. 2021(02): 68-74 .
    8. 闫广亮,张凤鹏,郝红泽,高继开. 电爆炸破碎岩石类脆性材料实验方法与应用. 煤炭学报. 2021(10): 3203-3211 .
    9. 冉慧娟,耿召阳,赵伟康,张金梁,王珏,严萍. 脉冲大电流应用电缆的设计. 科学技术与工程. 2020(03): 1064-1070 .
    10. 杨万有,郑春峰,李昂,尹莎莎,郭晓飞,赵展,卢勇. 可控冲击波致裂海上油层可行性分析. 钻采工艺. 2020(01): 38-41+9 .
    11. 薛乐星,潘文,冯博,封雪松,赵娟,冯晓军. 等离子体起爆条件对不敏感含能材料响应强度的影响. 火炸药学报. 2020(03): 320-324 .
    12. 汪倩,李晓蔚,阴国锋,范云飞,石桓通,李兴文. 水中铜丝电爆炸激光阴影及流体模拟研究. 高电压技术. 2020(07): 2586-2592 .
    13. 鄢宇杰,付荣耀,李楠,孙鹞鸿,严萍. 电弧压裂技术研究现状与发展. 高压电器. 2019(09): 71-77 .
    14. 张永民,安世岗,陈殿赋,师庆民,张增辉,赵有志,罗伙根,邱爱慈,秦勇. 可控冲击波增透保德煤矿8~#煤层的先导性试验. 煤矿安全. 2019(10): 14-17+21 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.7 %FULLTEXT: 17.7 %META: 79.0 %META: 79.0 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %China: 0.6 %China: 0.6 %India: 0.3 %India: 0.3 %上海: 1.6 %上海: 1.6 %东京: 0.1 %东京: 0.1 %东莞: 0.5 %东莞: 0.5 %中山: 0.1 %中山: 0.1 %北京: 10.8 %北京: 10.8 %南京: 0.7 %南京: 0.7 %南阳: 0.2 %南阳: 0.2 %台州: 1.0 %台州: 1.0 %吉林: 0.2 %吉林: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.5 %天津: 0.5 %宁波: 0.2 %宁波: 0.2 %宣城: 0.1 %宣城: 0.1 %巴中: 0.2 %巴中: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 0.8 %广州: 0.8 %张家口: 0.6 %张家口: 0.6 %徐州: 0.1 %徐州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.3 %扬州: 0.3 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %桃园: 0.1 %桃园: 0.1 %武汉: 0.2 %武汉: 0.2 %汕头: 0.2 %汕头: 0.2 %沧州: 0.1 %沧州: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 1.0 %深圳: 1.0 %温州: 0.2 %温州: 0.2 %湖州: 0.9 %湖州: 0.9 %漯河: 1.1 %漯河: 1.1 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %维克多维尔: 0.2 %维克多维尔: 0.2 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 19.3 %芒廷维尤: 19.3 %芝加哥: 0.9 %芝加哥: 0.9 %衢州: 0.7 %衢州: 0.7 %西宁: 45.3 %西宁: 45.3 %西安: 0.1 %西安: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %运城: 0.1 %运城: 0.1 %遵义: 0.3 %遵义: 0.3 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %锦州: 0.1 %锦州: 0.1 %长春: 0.5 %长春: 0.5 %长沙: 1.0 %长沙: 1.0 %其他ChinaIndia上海东京东莞中山北京南京南阳台州吉林哥伦布大连天津宁波宣城巴中常州常德广州张家口徐州成都扬州新乡无锡昆明晋城普洱杭州桃园武汉汕头沧州淮南深圳温州湖州漯河石家庄秦皇岛维克多维尔绵阳芒廷维尤芝加哥衢州西宁西安诺沃克运城遵义郑州重庆锦州长春长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1159) PDF downloads(407) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return