[1] | Guo Enze, Liu Zhengtang, Cui Bo, Liu Guobin, Shi Hangyu, Jiang Xu. Radar radiation source recognition method based on compressed residual network[J]. High Power Laser and Particle Beams, 2024, 36(4): 043016. doi: 10.11884/HPLPB202436.230119 |
[2] | Liu Qi, Du Yinglei, Xiang Rujian, Li Guohui, Zhang Qiushi, Xiang Zhenjiao, Wu Jing, Yue Xian, Bao Anchao, You Jiang. Deep learning phase inversion technique for single frame image based on Walsh function modulation[J]. High Power Laser and Particle Beams, 2024, 36(6): 069002. doi: 10.11884/HPLPB202436.240048 |
[3] | Zhang Hangyu, Wu Yi, Zhao Shuai, Feng Guoying. Edge quality improvement of ghost imaging based on convolutional neural network[J]. High Power Laser and Particle Beams, 2024, 36(7): 079002. doi: 10.11884/HPLPB202436.240030 |
[4] | Qiu Congpan, Liu Guodong, Zhang Dayong, Hu Liusen. Research progress in deep learning for wavefront reconstruction and wavefront prediction[J]. High Power Laser and Particle Beams, 2024, 36(7): 071002. doi: 10.11884/HPLPB202436.230430 |
[5] | Shao Yanhua, Feng Yupei, Zhang Xiaoqiang, Chu Hongyu. Using deep learning for surface defects identification of optical components[J]. High Power Laser and Particle Beams, 2022, 34(11): 112002. doi: 10.11884/HPLPB202234.220023 |
[6] | He Yongcheng, Zhang Yuliang, Wang Lin, Jin Dapeng, Wu Xuan, Kang Mingtao, Guo Fengqin, Zhu Peng. Prototype of an early warning system based on deep learning for the CSNS accelerator[J]. High Power Laser and Particle Beams, 2021, 33(4): 044008. doi: 10.11884/HPLPB202133.200340 |
[7] | Shi Zongjia, Xiang Zhenjiao, Du Yinglei, Wan Min, Gu Jingliang, Li Guohui, Xiang Rujian, You Jiang, Wu Jing, Xu Honglai. Wavefront reconstruction method based on far-field information and convolutional neural network[J]. High Power Laser and Particle Beams, 2021, 33(8): 081011. doi: 10.11884/HPLPB202133.210040 |
[8] | Li Ziqiang, Li Xinyang, Gao Zeyu, Jia Qiwang. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 081001. doi: 10.11884/HPLPB202133.210158 |
[9] | Xiang Wei, Shi Jinfang, Liu Guihua, Xu Feng. Application of deep convolutional neural network in detection of nuclear waste in radiation environment[J]. High Power Laser and Particle Beams, 2019, 31(11): 116001. doi: 10.11884/HPLPB201931.190220 |
[10] | Chen Lelin, Wei Biao, Li Pengcheng, Feng Peng, Zhou Mi. 252Cf-source-driven nuclear material concentration identification based on deep learning[J]. High Power Laser and Particle Beams, 2018, 30(9): 096001. doi: 10.11884/HPLPB201830.170487 |
[11] | Huang Wanqing, Zhang Ying, Liu Lanqin, Geng Yuanchao, Wang Wenyi. GRMS specification of high power optics with deformable mirror[J]. High Power Laser and Particle Beams, 2015, 27(05): 051001. doi: 10.11884/HPLPB201527.051001 |
[12] | yu hao, huang linhai, rao changhui, jiang wenhan. Control of near-field intensity of laser beam based on adaptive optics[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- . |
[13] | huang lin-hai, rao chang-hui, jiang wen-han. Beam propagation code for ICF device with adaptive optics system[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- . |
[14] | li you kuan, chen dong quan, du xiang wan. Atmospheric scintillation effect on adaptive optics correction[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- . |
[15] | fan cheng yu, wang ying jian, gong zhi ben. Effect of branch points on adaptive optics[J]. High Power Laser and Particle Beams, 2003, 15(05): 0- . |
[16] | li xin-yang, wang chun-hong, xian hao, jiang wen-han. Real-time modal reconstruction algorithm for adaptive optics systems[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- . |
[17] | xi de-xun, zhou chang-bing. Uniformity calibration system of electron beam scan with BP ANN[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- . |
[18] | shen feng, jiang wen-han. Closed-loop transferring characteristics of shack-hartmann wavefront sensor noise in adaptive optical system[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- . |