Wang Ke, Duan Yantao, Shi Lihua, et al. A pulsed magnetic field sensor based on dual-loop differential structure[J]. High Power Laser and Particle Beams, 2022, 34: 043003. doi: 10.11884/HPLPB202234.210337
Citation: Yuan Mingquan, Lei Qiang, Wang Xiong. Fabrication process of micro shear stress sensors[J]. High Power Laser and Particle Beams, 2017, 29: 104103. doi: 10.11884/HPLPB201729.170128

Fabrication process of micro shear stress sensors

doi: 10.11884/HPLPB201729.170128
  • Received Date: 2017-04-19
  • Rev Recd Date: 2017-06-13
  • Publish Date: 2017-10-15
  • The research and testing technique of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the micro shear stress sensor has the advantages of small size, high sensitivity, good stability, and good dynamic response. The micro shear stress sensor can be integrated with other flow field sensors whose process is compatible with that of the micro shear stress sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enables large area and accurate measurement for the near-wall flow. A micro shear stress sensor structure is proposed, whose sensing element does not directly contact with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon deep reactive ion etching(DRIE). The optimized process parameters of DRIE are etching power 1600 W/LF power 100 W, SF6 flux 360 cm3/min, C4F8 flux 300 cm3/min, O2 flux 300 cm3/min. With Cr/Au mask, etching depth of glass shallow groove can be controlled at 30 ℃ and low concentration HF solution; spray etching and wafer rotating improve the corrosion surface quality of glass shallow groove. The micro shear stress sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 m, the depth error of the shallow groove is less than 0.03 m, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.
  • Relative Articles

    [1]Li Yunfei, Shi Jinfang, Qiu Rong, Yu Jian, Guo Decheng, Zhou Lei. Effect of 355 nm and 1064 nm dual-wavelength conditioning on the bulk damage properties of DKDP crystal[J]. High Power Laser and Particle Beams, 2022, 34(6): 061003. doi: 10.11884/HPLPB202234.220060
    [2]Xu Ziyuan, Wang Yueliang, Zhao Yuan'an, Shao Jianda. Laser damage behaviors of DKDP crystals dominated by laser pulse duration[J]. High Power Laser and Particle Beams, 2019, 31(9): 091004. doi: 10.11884/HPLPB201931.190164
    [3]Han Wei, Xiang Yong, Wang Fang, Zhou Lidan, Feng Bin, Li Fuquan, Zhao Junpu, Zheng Kuixing, Zhu Qihua, Wei Xiaofeng, Zheng Wanguo, Gong Mali. Measurement of Raman scattering gain coefficient in large-aperture DKDP crystals irradiated by 351 nm pulses[J]. High Power Laser and Particle Beams, 2016, 28(02): 021005. doi: 10.11884/HPLPB201628.021005
    [4]Wu Shenjiang, Wang Nan, Su Junhong, Xu Junqi, Ge Jinman, Liu Bin, Guo Shuling. Laser-induced damage of diamond-like carbon films with horizontal electric field[J]. High Power Laser and Particle Beams, 2015, 27(09): 092003. doi: 10.11884/HPLPB201527.092003
    [5]Cheng Xiufeng, Xu Mingxia, Liu Baoan, Zhang Qinghua, Zhang Jianfeng, Wang Zhengping, Sun Xun, Xu Xinguang. Properties of DKDP crystals grown at different temperature[J]. High Power Laser and Particle Beams, 2014, 26(01): 012006. doi: 10.3788/HPLPB201426.012006
    [6]Qiu Rong, Wang Junbo, Ren Huan, Li Xiaohong, Shi Pengcheng, Liu Hao, Ma Ping. Growth of laser-induced damage in fused silica under nanosecond laser irradiation[J]. High Power Laser and Particle Beams, 2012, 24(05): 1057-1062. doi: 10.3788/HPLPB20122405.1057
    [7]Wu Shenjiang, Su Junhong, Shi Wei, Wang Xinmei, Xu Junqi. Laser-induced damage morphology of diamond-like carbon films with external electric field[J]. High Power Laser and Particle Beams, 2012, 24(01): 207-209.
    [8]qiu rong, wang junbo, li xiaohong, shi pengcheng, liu hao, ma ping. Laser-induced damage on K9 surface under nanotosecond irradiation[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]liu xiaofeng, li xiao, zhao yuan'an, li dawei, shao jianda, fan zhengxiu. Damage characteristic improvement of high reflectors by SiO2 overlayer[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [10]ling xiulan, zhao yuan, li dawei, shao jianda, fan zhengxiu. Laser-induced damage of optical films in vacuum environments[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [11]miao xinxiang, yuan xiaodong, wang chengcheng, wang haijun, lü haibing, xiang xia, zheng wanguo. Laser induced damage in fused silica contaminated by Al film[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [12]sun shaotao, ji lailin, wang zhengping, mu xiaoming, sun xun, xu xinguang, shi chongde. Growth and laser damage threshold of DKDP crystal grown by different methods[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [13]hua jinrong, zu xiaotao, li li, yuan xiaodong, zheng wanguo, jiang xiaodong. Numerical simulation of laser-induced damage on rear surface of optical material[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [14]guo yuan-jun, zu xiao-tao, jiang xiao-dong, yuan xiao-dong, zhao song-nan, xu shi-zhen, wang bi-yi, tian dong-bin. Laser-induced damage of sol-gel silica acid and basic thin films[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
    [15]miao xin-xiang, yuan xiao-dong, wang hai-jun, lü hai-bing, wang cheng-cheng, zheng wan-guo. Experiment of laser induced damage threshold for fused silica initiated at thin film contamination of Cu on surface[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [16]sun shao-tao, ji lai-lin, wang zheng-ping, liu bing, mu xiao-ming, sun xun, xu xin-guang, shi chong-de. Growth and laser damage threshold of DKDP crystal from different material[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [17]guo yuan-jun, zu xiao-tao, jiang xiao-dong, yuan xiao-dong, xu shi-zhen, wang bi-yi, tian dong-bin, . Comparison of laser-induced damage of monolayer ZrO2 films preparated by PVD and sol-gel methods[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- .
    [18]yu ai-fang, fan fei-di, liu zhong-xing, zhu yong, chen chuang-tian. Effect of SiO2 barrier layer on laser induced damage threshold of second harmonic antireflection coatings on LiB3O5 crystal[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [19]jiang xiao-dong, huang zu-xing, ren huan, peng jing, ye lin, tang can. Study of laser conditioning process for optical films[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
    [20]gan rong-bing, lin li-bin, lu yong, liu qiang, zuo zhi-yun, jiang xiao-dong, huang zhu-xin, ye lin. Laser-induced bulk damage of UBK7 glass owing to its rear-surface defects[J]. High Power Laser and Particle Beams, 2001, 13(05): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.8 %FULLTEXT: 12.8 %META: 80.5 %META: 80.5 %PDF: 6.7 %PDF: 6.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.5 %其他: 5.5 %其他: 0.5 %其他: 0.5 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.3 %United States: 0.3 %[]: 0.4 %[]: 0.4 %上海: 1.2 %上海: 1.2 %东京都: 0.2 %东京都: 0.2 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %乐山: 0.1 %乐山: 0.1 %佛山: 0.2 %佛山: 0.2 %北京: 8.3 %北京: 8.3 %十堰: 0.3 %十堰: 0.3 %南京: 2.6 %南京: 2.6 %南充: 0.1 %南充: 0.1 %南通: 0.2 %南通: 0.2 %厦门: 0.1 %厦门: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %咸阳: 0.6 %咸阳: 0.6 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 1.7 %天津: 1.7 %太原: 1.0 %太原: 1.0 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %岩手: 0.3 %岩手: 0.3 %常州: 0.2 %常州: 0.2 %广州: 1.2 %广州: 1.2 %张家口: 1.2 %张家口: 1.2 %徐州: 0.2 %徐州: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.9 %扬州: 0.9 %无锡: 0.2 %无锡: 0.2 %昆明: 0.4 %昆明: 0.4 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.9 %杭州: 1.9 %桂林: 0.2 %桂林: 0.2 %桃园: 0.1 %桃园: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.2 %洛阳: 0.2 %浙江省: 0.2 %浙江省: 0.2 %深圳: 0.6 %深圳: 0.6 %温州: 0.8 %温州: 0.8 %湖州: 0.2 %湖州: 0.2 %漯河: 2.2 %漯河: 2.2 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.9 %绵阳: 0.9 %芒廷维尤: 17.9 %芒廷维尤: 17.9 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 32.6 %西宁: 32.6 %西安: 2.2 %西安: 2.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.3 %运城: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.9 %郑州: 0.9 %重庆: 0.2 %重庆: 0.2 %金华: 1.0 %金华: 1.0 %长春: 0.1 %长春: 0.1 %长沙: 1.9 %长沙: 1.9 %长治: 0.2 %长治: 0.2 %青岛: 0.2 %青岛: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他ChinaIndiaUnited KingdomUnited States[]上海东京都东莞中山临汾丹东丽水乐山佛山北京十堰南京南充南通厦门台州合肥咸阳嘉兴天津太原宁波安康宣城岩手常州广州张家口徐州成都扬州无锡昆明晋城普洱杭州桂林桃园榆林武汉沈阳洛阳浙江省深圳温州湖州漯河石家庄福州秦皇岛绍兴绵阳芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安贵阳运城邯郸郑州重庆金华长春长沙长治青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (926) PDF downloads(239) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return