Volume 30 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Pei Gaofei, Chen Hailin, Gao Cheng. Lightning protection evaluation technology of surface ship based on leader progression model[J]. High Power Laser and Particle Beams, 2018, 30: 013202. doi: 10.11884/HPLPB201830.170193
Citation: Pei Gaofei, Chen Hailin, Gao Cheng. Lightning protection evaluation technology of surface ship based on leader progression model[J]. High Power Laser and Particle Beams, 2018, 30: 013202. doi: 10.11884/HPLPB201830.170193

Lightning protection evaluation technology of surface ship based on leader progression model

doi: 10.11884/HPLPB201830.170193
  • Received Date: 2017-06-01
  • Rev Recd Date: 2017-09-04
  • Publish Date: 2018-01-15
  • The high resolution simulation of cloud-to-ground lightning leaders on sea surface is presented based on two-dimensional leader progression model, and the fine image of the development process of the lightning leader is acquired. Through the establishment of two-dimensional model of ship, and according to the related standards of ship, the number and height and position of lightning rod are determined, and their lightning protection area is evaluated using proposed method. The test data show that when the ship adopts the single lightning rod protection, the probability of lightning strike is obviously increased, and the protection effect is better in the vicinity of the lightning rod. Compared with the single rod scheme, when the ship adopts double lightning rod protection the overall structure height of the ship is reduced, total number of lightning flashes on the ship will be reduced, and the protective effect will be better. With the development of long air gap discharge test and lightning observation, the protection analysis method will be more thorough and accurate.
  • loading
  • [1]
    罗佳俊, 罗经权. 渤海"长青号"金属塔类装置雷电防护设计[J]. 船海工程, 2009, 38(6): 99-101. doi: 10.3963/j.issn.1671-7953.2009.06.029

    Luo Jiajun, Luo Jingquan. Design of the metal tower-type devices lightning protection for Chang-qing FPSO. Ship & Ocean Engineering, 2009, 38(6): 99-101 doi: 10.3963/j.issn.1671-7953.2009.06.029
    [2]
    Thomson E M. A critical assessment of the U.S. code for lightning protection of boats[J]. IEEE Trans Electromagn Compat, 1991(33): 132-138. https://ieeexplore.ieee.org/document/78350
    [3]
    张义军, 周秀骥. 雷电研究的回顾和进展[J]. 应用气象学报, 2006, 17(6): 829-834. doi: 10.3969/j.issn.1001-7313.2006.06.019

    Zhang Yijun, Zhou Xiuji. Review and progress of lightning research. Journal of Applied Meteorological Science, 2006, 17(6): 829-834 doi: 10.3969/j.issn.1001-7313.2006.06.019
    [4]
    Hossam-Eldin A A, Omran E A M. Maritime structures and ships lightning protection[C]//Electrical Insulation Conference and Electrical Manufacturing Expo, 2007: 30-34.
    [5]
    Grzybowski S. Experimental evaluation of lightning protection zone used on ship[C]//IEEE Electric Ship Technologies Symposium, 2007: 215-220.
    [6]
    万启发, 霍锋, 谢梁, 等. 长间隙放电特性研究综述[J]. 高电压技术, 2012, 38(10): 2499-2505.

    Wan Qifa, Huo Feng, Xie Liang, et al. Summary of research on flash over characteristics of long air-gaps. High Voltage Engineering, 2012, 38(10): 2499-2505
    [7]
    谭涌波, 周博文, 郭秀峰, 等. 建筑物高度对上行闪电触发以及传播影响的数值模拟[J]. 气象学报, 2015, 73(3): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503011.htm

    Tan Yongbo, Zhou Bowen, Guo Xiufeng, et al. A numerical simulation of the effects of building height on single upward lightning trigger and propagation. Acta Meteorologica Sinica, 2015, 73(3): 546-556 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503011.htm
    [8]
    Rizk F A M. Modeling of transmission line exposure to direct lightning strokes[J]. IEEE Trans Power Delivery, 1990, 5(4): 1983-1997.
    [9]
    谷山强, 陈家宏, 陈维江, 等. 长空气间隙放电综合观测系统的建立[J]. 高电压技术, 2009, 35(11): 2640-2646.

    Gu Shanqiang, Chen Jiahong, Chen Weijiang, et al. Establishment of integrated observation system for long air gap discharges. High Voltage Engineering, 2009, 35(11): 2640-2646
    [10]
    Niemeyer L. Pietronero L, Wiesmann H J. Fractal dimension of dielectric breakdown[J]. Physics Review Letter, 1984, 52(12): 1033-1036
    [11]
    Wiesmann H J, Zeller H R. A fractal model of dielectric breakdown and pre-breakdown in solid dielectrics[J]. Journal of Applied Physics, 1986, 60(5): 1770-1773. doi: 10.1063/1.337219
    [12]
    谷琛, 严萍, 邵涛, 等. 基于分形理论的电介质放电仿真计算[J]. 高电压技术, 2006, 32(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200601000.htm

    Gu Chen, Yan Ping, Shao Tao, et al. Fractal simulation of breakdown in dielectric. High Voltage Engineering, 2006, 32(1): 1-4 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200601000.htm
    [13]
    何金良, 曾嵘, 陈水明. 输电线路雷电防护技术研究(三): 防护措施[J]. 高电压技术, 2009, 35(12): 2917-2923. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200912007.htm

    He Jinliang, Zeng Rong, Chen Shuiming. Lightning protection study of transmission line, part Ⅲ: protection measure. High Voltage Engineering, 2009, 35(12): 2917-2923 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200912007.htm
    [14]
    Golde R H. Lightning protection[M]. London: Edward Arnold, 1973.
    [15]
    He Jinliang, Tu Youping, Zeng Rong, et al. Numeral analysis model for shielding failure of transmission line under lightning stroke[J]. IEEE Trans on Power Delivery, 2005, 20(2): 815-822. https://ieeexplore.ieee.org/document/1413321/
    [16]
    Chen Qiang. Thunderstorm charged model & discharge simulation and numerical evaluation of the lightning protection system. Shijiazhuang: Ordnance Engineering College, 2011: 10-13
    [17]
    华冠军, 王晓瑜, 徐先芝, 等. 接地电阻对放电击中点影响的试验[J]. 华中理工大学学报, 1998, 26(9): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG809.021.htm

    Hua Guanjun, Wang Xiaoyu, Xun Xianzhi, et al. The experimental study on ground resistance affecting discharge striking points. J Huazhong Univ of Sci & Tech, 1998, 26(9): 68-70 https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG809.021.htm
    [18]
    詹花茂, 王晓瑜, 汪雁, 等. 放电击中点概率分布影响因素的实验研究[J]. 高电压技术, 1999, 25(2): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ199902033.htm

    Zhan Huamao, Wang Xiaoyu, Wang Yan, et al. The experimental study on factors affecting probability distribution of discharge striking points. High Voltage Engineering, 1999, 25(2): 79-81 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ199902033.htm
    [19]
    Ait-Amar S, Berger G. A modified version of the rolling sphere method[J]. IEEE Trans Dielectr Electr, 2009, 16: 718-725.
    [20]
    刘蜀岷. 避雷针保护范围不能"绝对化"[J]. 高电压技术, 2005, 31(7): 82-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200507030.htm

    Liu Shumin. Avoiding absolutization of protection range of lightning rods. High Voltage Engineering, 2005, 31(7): 82-83 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200507030.htm
    [21]
    GJB4000-2000舰船通用规范电力规范3组电力系统[S]. 北京: 总装备部军标出版发行部, 2000.

    GJB4000-2000 General specifications for naval ships part 3 power system. Beijing: Gerneral Armement Department Military Standard Publishing Department, 2000
    [22]
    王萌. 水面舰艇避雷针防护区域评估方法[J]. 舰船科学技术, 2011, 33(6): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201106033.htm

    Wang Meng. The evaluation method of lightning rod protection area of surface ships. Ship Science and Technology, 2011, 33(6): 140-144 https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201106033.htm
    [23]
    Defend Standard 02-516, Guide to Lightning Protection in HM surface ships[S].
    [24]
    Mazur V. Computer simulation of a downward negative stepped leader and its interaction with a ground structure[J]. Journal of Geophysical Research, 2000, 105(17): 22361-22369. doi: 10.1029/2000JD900278
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (1583) PDF downloads(393) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return