Volume 30 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Liu Bin, Lü Huanwen, Li Lan, et al. Monte Carlo simulation of Cherenkov light generated by underwater Co-60 source[J]. High Power Laser and Particle Beams, 2018, 30: 016007. doi: 10.11884/HPLPB201830.170199
Citation: Liu Bin, Lü Huanwen, Li Lan, et al. Monte Carlo simulation of Cherenkov light generated by underwater Co-60 source[J]. High Power Laser and Particle Beams, 2018, 30: 016007. doi: 10.11884/HPLPB201830.170199

Monte Carlo simulation of Cherenkov light generated by underwater Co-60 source

doi: 10.11884/HPLPB201830.170199
  • Received Date: 2017-06-06
  • Rev Recd Date: 2017-09-04
  • Publish Date: 2018-01-15
  • With wide application of nuclear techniques, accidents of lost radioactive sources increase. The airborne gamma spectrometer can be used for searching the lost radiation sources on the ground level. However, for radioactive sources lost in water, the use of gamma spectrometer is limited as a result of the shielding of gamma rays by water. So detection of underwater radioactive source based on Cherenkov light generated by the radioactive source is becoming important. With applications of combined simulation of Geant4 and MCNP, and continuation simulation method in Geant4, distributions and transmission of Cherenkov light generated by underwater Co-60 sealed source were simulated. The simulation reveals that wavelength of Cherenkov light is between 300~600 nm through transmission in water. The light intensity becomes stronger from the edge to the center, and the distribution range approximately equals to the depth of the radioactive source in water. The light flux is about 100 Cherenkov photons·cm-2 after 300 m transmission in water. The Cherenkov light can be detected by the characteristics of its wavelength spectrum and intensity distribution.
  • loading
  • [1]
    闻良生, 龚频, 黄茜, 等. 小型旋翼机机载辐射环境监测系统的设计与实现[J]. 强激光与粒子束, 2016, 28: 106004. doi: 10.11884/HPLPB201628.160036

    Wen Liangsheng, Gong Pin, Huang Xi, et al. Design and implementation of minitype rotorcraft airborne radiation monitoring system. High Power Laser and Particle Beams, 2016, 28: 106004 doi: 10.11884/HPLPB201628.160036
    [2]
    倪卫冲, 刘士凯, 高国林, 等. AGS-863航空伽马能谱勘查系统机载试验[J]. 中国核科学技术进展报告, 2011, 2(1): 335-343. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD201110001060.htm

    Ni Weichong, Liu Shikai, Gao Guolin, et al. Airborne testing of AGS-863 airborne gamma spectrometry survey system. Progress Report on China Nuclear Science & Technology, 2011, 2(1): 335-343 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD201110001060.htm
    [3]
    翁渝民. 单光子计数-弱信号检测的有力手段[J]. 物理, 1980, 9(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ198001007.htm

    Weng Yumin. Single photon counting-efficient technique for weak single measurement. Physics, 1980, 9(1): 20-24 https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ198001007.htm
    [4]
    舒迪昀, 汤晓兵, 侯笑笑, 等. 基于Cerenkov效应水下放射源搜寻技术的可行性分析研究[J]. 原子能科学技术, 2015, 49(4): 582-588. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201504002.htm

    Shu Diyun, Tang Xiaobing, Hou Xiaoxiao, et al. Analysis of feasibility for searching underwater radioactive source using Cerenkov effect. Atomic Energy Science and Technology, 2015, 49(4): 582-588 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201504002.htm
    [5]
    刘斌, 贾清刚, 张天奎, 等. 水下切伦科夫光光斑的蒙特卡罗模拟[J]. 强激光与粒子束, 2013, 25(1): 196-200. doi: 10.3788/HPLPB20132501.0196

    Liu Bin, Jia Qinggang, Zhang Tiankui, et al. Monte Carlo simulation of Cherenkov light spot produced by underwater radioactive source. High Power Laser and Particle Beams, 2013, 25(1): 196-200 doi: 10.3788/HPLPB20132501.0196
    [6]
    Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research A, 2007, 506(3): 250-303. https://www.sciencedirect.com/science/article/pii/S0168900203013688
    [7]
    Allison J, Amako K, Apostolaki J, et al. Geant4 developments and applications[J]. IEEE Trans Nuclear Science, 2006, 53(1): 270-278. https://ieeexplore.ieee.org/document/1610988/
    [8]
    Zhang Qingmin, Hu Zhigang, Deng Bangjie, et al. A simple iterative method for compensating response delay of self-powered neutron detector[J]. Nuclear Science and Engineering, 2017, 186(1): 293-302.
    [9]
    GB7465-2009. 高活度钴60密封放射源[S]. 中华人民共和国国家标准, 2009.

    GB7465-2009. High activity cobalt-60 sealed radioactive sources. PRC standard, 2009
    [10]
    Pope R M, Fry E S. Absorption spectrum(380~700 nm) of pure water. Integrating cavity measurement[J]. Appl Opt, 1997, 36(33): 8710-8723. https://pubmed.ncbi.nlm.nih.gov/18264420/
    [11]
    Quickenden T I, Irvin J A. The ultraviolet absorption spectrum of liquid water[J]. J Chem Phys, 1980, 72(8);4416-4428.
    [12]
    曹婷婷, 罗时荣. 天空直射光谱和天空光谱的测量与分析[J]. 物理学报, 2006, 56(9): 5554-5557. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200709095.htm

    Cao Tingting, Luo Shirong. Measurement and analysis of direct sunlight and skylight spectra. Acta Phsica Sinica, 2006, 56(9): 5554-5557 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200709095.htm
    [13]
    徐英莹, 金伟其. 夜晚天空光谱辐射测量研究及光谱去噪分析[J]. 光谱学与光谱分析, 2012, 32(6): 1456-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201206006.htm

    Xu Yingying, Jin Weiqi. Measurement of night sky spectral radiation and analysis of spectral denoising. Spectroscopy and Spectral Analysis, 2012, 32(6): 1456-1459 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201206006.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (1304) PDF downloads(250) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return