Volume 30 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
He Shoujie, Zhang Baoming, Wang Peng, et al. Simulation on the dynamics of hollow cathode discharge in helium[J]. High Power Laser and Particle Beams, 2018, 30: 024001. doi: 10.11884/HPLPB201830.170211
Citation: He Shoujie, Zhang Baoming, Wang Peng, et al. Simulation on the dynamics of hollow cathode discharge in helium[J]. High Power Laser and Particle Beams, 2018, 30: 024001. doi: 10.11884/HPLPB201830.170211

Simulation on the dynamics of hollow cathode discharge in helium

doi: 10.11884/HPLPB201830.170211
  • Received Date: 2017-06-16
  • Rev Recd Date: 2017-08-29
  • Publish Date: 2018-02-15
  • In this paper, the spatiotemporal dynamics of hollow cathode discharge in helium is simulated by using the fluid model. The spatiotemporal distribution of electrons density, metastable helium atoms density, potential, electric field, direct ionization rate and step-wise ionization are calculated. In particular, the effects of metastable atoms and step-wise ionization on the discharge are discussed. The results show that the discharge is divided into five different discharge modes with the increase of current. In the first stage, the discharge is Townsend discharge mode, the current rises very slowly, and the charged particle density, metastable atom density and radial electric field are very weak. In the second stage, the current increases rapidly, and the discharge mode changes from the Townsend discharge to the hollow cathode discharge. The charged particle density, metastable atom density and radial electric field increase rapidly. The third stage reaches the quasi steady state, and the discharge current increases slowly, resulting in an obvious cathode sheath structure; The fourth stage is the formation stage of the hollow cathode effect, and transits to the steady state. The fifth stage is the steady-state discharge stage. The results also show that the metastable helium atoms and the stepwise ionization are weak in the initial stage of the discharge, and in the initial three stages, the formation of new electrons are dominated by ground ionization. With the development of the discharge, the stepwise ionization caused by the metastable atoms gradually approaches and exceeds the ground ionization, and the contribution rate to the total ionization is getting higher and higher.
  • loading
  • [1]
    Schoenbach K H, Becker K. 20 years of microplasma research: a status report[J]. Eur Phys J D, 2016, 70(2): 29. doi: 10.1140/epjd/e2015-60618-1
    [2]
    欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术, 2016, 42(3): 673-684. doi: 10.13336/j.1003-6520.hve.20160308006

    Ouyang Jiting, Zhang Yu, Qin Yu. Micro-discharge and its applications. High Voltage Engineering, 2016, 42(3): 673-684 doi: 10.13336/j.1003-6520.hve.20160308006
    [3]
    赵日康, 张紫浩, 张林, 等. 圆柱形等离子体对微波散射的数值模拟与实验研究[J]. 强激光与粒子束, 2017, 29(3): 36-42. doi: 10.11884/HPLPB201729.170043

    Zhao Rikang, Zhang Zihao, Zhang Lin, et al. Microwave scattering by inhomogeneous plasma column. High Power Laser and Particle Beams, 2017, 29(3): 36-42 doi: 10.11884/HPLPB201729.170043
    [4]
    顾小卫, 蒙林, 李家胤, 等. 微空心阴极放电的3维数值模拟[J]. 强激光与粒子束, 2009, 21(1): 92-96. http://www.hplpb.com.cn/article/id/3838

    Gu Xiaowei, Meng Lin, Li Jiayin, et al. Three-dimensional numerical simulation of microhollow cathode discharge model. High Power Laser and Particle Beams, 2009, 21(1): 92-96 http://www.hplpb.com.cn/article/id/3838
    [5]
    Boeuf J P, Pitchford L C, Schoenbach K H. Predicted properties of microhollow cathode discharges in xenon[J]. Appl Phys Lett, 2005, 86(7): 468.
    [6]
    吴亚雄, 王海兴. 微空心阴极内氩等离子体特性的二维数值模拟[J]. 高电压技术, 2015, 41(9): 2965-2972. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201509022.htm

    Wu Yaxiong, Wang Haixing. Two-dimensional simulation of discharge characteristics of argon plasma in microhollow cathode. High Voltage Engineering, 2015, 41(9): 2965-2972 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201509022.htm
    [7]
    夏广庆, 薛伟华, 陈茂林, 等. 氩气微腔放电中特性参数的数值模拟研究[J]. 物理学报, 2011, 60: 015201. doi: 10.7498/aps.60.015201

    Xia Guangqing, Xue Weihua, Chen Maolin, et al. Numerical simulation study on characteristic parameters of microcavity discharge in argon. Acta Physica Sinica, 2011, 60: 015201 doi: 10.7498/aps.60.015201
    [8]
    Hong Y J, Kim G J, Lee S H, et al. Comparison between particle-in-cell Monte-Carlo and fluid simulations of argon microhollow discharges[J]. Computer Physics Communications, 2007, 177(1/2): 128.
    [9]
    Wang Q, Doll F, Donnelly V M, et al. Experimental and theoretical study of the effect of gas flow on gas temperature in an atmospheric pressure microplasma[J]. J Phys D: Appl Phys, 2007, 40(14): 4202.
    [10]
    邹晓兵, 杨新婷, 付洋洋, 等. 低气压He/N2混合气体的辉光放电数值模拟[J]. 高电压技术, 2016, 42(12): 3741-3746. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201612004.htm

    Zou Xiaobing, Yang Xinting, Fu Yangyang, et al. Numerical simulation of He/N2 mixture glow discharge at low pressure. High Voltage Engineering, 2016, 42(12): 3741-3746 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201612004.htm
    [11]
    Beleznai S, Mihajlik G, Maros I, et al. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp[J]. J Phys D: Appl Phys, 2010, 43: 015203.
    [12]
    哈静, 谷延霞, 刘立芳. 微空心阴极放电时空特性[J]. 强激光与粒子束, 2014, 26: 054004. doi: 10.11884/HPLPB201426.054004

    Ha Jing, Gu Yanxia, Liu Lifang. Temporal and spatial characteristics of micro-hollow cathode discharge. High Power Laser and Particle Beams, 2014, 26: 054004 doi: 10.11884/HPLPB201426.054004
    [13]
    付洋洋, 罗海云, 邹晓兵, 等. 棒-板电极下缩比气隙辉光放电相似性的仿真研究[J]. 物理学报, 2014, 63: 095206. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201409036.htm

    Fu Yangyang, Luo Haiyun, Zou Xiaobing, et al. Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electro de configuration. Acta Physica Sinica, 2014, 63: 095206 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201409036.htm
    [14]
    Rauf S, Kushner M J. Dynamics of a coplanar-electrode plasma display panel cell. I. Basic operation[J]. J Appl Phys, 1999, 85(7): 3460-3469.
    [15]
    Deloche R, Monchicourt P, Cheret M, et al. High-pressure helium afterglow at room temperature[J]. Phys Rev A, 1976, 13(3): 1140-1176.
    [16]
    Phelps A V. Absorption studies of helium metastable atoms and molecules[J]. Phys Rev, 1955, 99(4): 1307-1313.
    [17]
    Ward A L. Calculations of cathode-fall characteristics[J]. J Appl Phys, 1962, 33(9): 2789-2794.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views (1006) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return