Volume 30 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Li Yang, Hao Lijuan, Zou Jun, et al. Validation of SuperMC based on VENUS-Ⅱ benchmark experiment[J]. High Power Laser and Particle Beams, 2018, 30: 016008. doi: 10.11884/HPLPB201830.170218
Citation: Li Yang, Hao Lijuan, Zou Jun, et al. Validation of SuperMC based on VENUS-Ⅱ benchmark experiment[J]. High Power Laser and Particle Beams, 2018, 30: 016008. doi: 10.11884/HPLPB201830.170218

Validation of SuperMC based on VENUS-Ⅱ benchmark experiment

doi: 10.11884/HPLPB201830.170218
  • Received Date: 2017-06-20
  • Rev Recd Date: 2017-08-31
  • Publish Date: 2018-01-15
  • Super Monte Carlo Program for Nuclear and Radiation Simulation (SuperMC), a general, intelligent, accurate and precise simulation software system for the design and safety evaluation of nuclear systems, is developed by FDS team of key laboratory of neutronics and radiation safety. In order to validate the accuracy of SuperMC in calculating MOX-fueled system, it was benchmarked with the VENUS-Ⅱ MOX-fueled core model released by OECD/NEA. Both cell and core calculations were performed. A series of key parameters of cell infinite multiplication factor, reaction rates per heavy isotope, core effective multiplication factor, and axial fission rate distribution of six fuel pins were calculated. The computational results are compared with measured data and the MCNP calculated results, showing that the SuperMC results agree well with the experimental results and the MCNP calculated results. The correctness and reliability of SuperMC calculating neutron transport in MOX-fuelled system are preliminarily verified.
  • loading
  • [1]
    Wu Yican, Song Jing, Zheng Huaqing, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J]. Annals of Nuclear Energy, 2015, 82: 161-168. doi: 10.1016/j.anucene.2014.08.058
    [2]
    Wu Yican, FDS Team. CAD-based interface programs for fusion neutron transport simulation[J]. Fusion Engineering and Design, 2009, 84(7/11): 1987-1992. https://www.sciencedirect.com/science/article/pii/S0920379608004948
    [3]
    吴宜灿, 宋靖, 胡丽琴, 等. 超级蒙特卡罗核计算仿真软件系统SuperMC[J]. 核科学与工程, 2016, 36(1): 62-71. doi: 10.3969/j.issn.0258-0918.2016.01.009

    Wu Yican, Song Jing, Hu Liqin, et al. Super Monte Carlo simulation program for nuclear and radiation process: SuperMC. Nuclear Science and Engineering, 2016, 36(1): 62-71 doi: 10.3969/j.issn.0258-0918.2016.01.009
    [4]
    余盛鹏, 吴斌, 宋靖, 等. SuperMC在ITER中子学建模中的应用[J]. 核科学与工程, 2016, 36(1): 84-87. doi: 10.3969/j.issn.0258-0918.2016.01.012

    Yu Shengpeng, Wu Bin, Song Jing, et al. The application of SuperMC in ITER neutronics modeling. Nuclear Science and Engineering, 2016, 36(1): 84-87 doi: 10.3969/j.issn.0258-0918.2016.01.012
    [5]
    Zhang Binhang, Song Jing, Sun Guangyao, et al. Criticality validation of SuperMC with ICSBEP[J]. Annals of Nuclear Energy, 2016, 87: 494-499. https://www.sciencedirect.com/science/article/pii/S0306454915004831
    [6]
    汪晖, 宋靖, 孙光耀, 等. 基于钠冷快堆BN-600的SuperMC基准校验分析[J]. 原子能科学技术, 2015, 49(s1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2015S1003.htm

    Wang Hui, Song Jing, Sun Guangyao, et al. Benchmarking of SuperMC based on sodium cooled fast reactor BN-600. Atomic Energy Science and Technology, 2015, 49(s1): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2015S1003.htm
    [7]
    刘鸿飞, 张彬航, 张澍, 等. 基于Hoogenboom基准模型的SuperMC全堆芯计算能力校验[J]. 核技术, 2016, 39(4): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201604013.htm

    Liu Hongfei, Zhang Binhang, Zhang Shu, et al. Full reactor core calculation performance validation of SuperMC based on Hoogenboom benchmark. Nuclear Techniques, 2016, 33(5): 80-84 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201604013.htm
    [8]
    孙光耀, 宋靖, 郑华庆, 等. 超级蒙特卡罗软件SuperMC2.0中子输运计算校验[J]. 原子能科学技术, 2013, 47(s2): 520-525. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S2030.htm

    Sun Guangyao, Song Jing, Zheng Huaqing, et al. Benchmark of neutron transport simulation capability of super Monte Carlo calculation program SuperMC2.0. Atomic Energy Science and Technology, 2013, 47(s2): 520-525 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S2030.htm
    [9]
    Manual M. X-5 Monte Carlo Team. MCNP—A general Monte Carlo N-particle transport code[R]. LA-UR- 03-1987, 2003.
    [10]
    Na B-C, Messaoudi N. Benchmark on the three-dimensional VENUS-2 MOX core measurements[R]. 2003.
    [11]
    胡家驹, 马续波, 陈义学, 等. 基于VENUS-2临界基准的CosMC程序验证[J]. 核动力工程, 2014, 35(s2): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2026.htm

    Hu Jiaju, Ma Xubo, Chen Yixue, et al. Verification of CosMC based on VENUS-2 critical benchmark. Nuclear Power Engineering, 2014, 35(s2): 94-97 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2026.htm
    [12]
    Savva P, Varvayanni N, Catasaros N. Analysis of the three-dimensional VENUS-2 MOX core benchmark using the Monte Carlo code TRIPOLI-4 and the ENDF/B-VI. 4, ENDF/B-VⅡ. 0 and JEFF-3.1 nuclear data sets[J]. Nuclear Engineering and Design, 2014, 273: 215-233. https://www.sciencedirect.com/science/article/pii/S0029549314001812
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1467) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return