Liu Jiao, Yan Liping, Li Bin, et al. Artificial neural network modeling of component nonlinear behavior and application in conducted interference analysis[J]. High Power Laser and Particle Beams, 2015, 27: 103212. doi: 10.11884/HPLPB201527.103212
Citation: Sun Yanting, Chen Size, Yang Qi, et al. Simulation study and validation of improved amplified source method[J]. High Power Laser and Particle Beams, 2018, 30: 016002. doi: 10.11884/HPLPB201830.170219

Simulation study and validation of improved amplified source method

doi: 10.11884/HPLPB201830.170219
  • Received Date: 2017-06-20
  • Rev Recd Date: 2017-09-11
  • Publish Date: 2018-01-15
  • Amplified Source Method(ASM) is based on point kinetics model. While used in Accelerator Driven System(ADS) with deep subcriticality and strong external source, its result is affected by the external source effect, the fundamental flux effect and the spatial effect seriously. In order to solve this problem, an annular detector positioning method with calibration has been given. In order to test the practicality of this method, further study is performed against the Kyoto University Critical Assembly by Super Monte Carlo Program for Nuclear and Radiation Simulation(SuperMC) with the HENDL database. Numerical results demonstrate that the proposed method works well for the problem and the six fission chambers in the assembly can give a good measurement result. And more detectors arranged on the fringes of the core are needed in the upcoming experiments to get more accurate measurement results.
  • [1]
    詹文龙, 徐瑚珊. 未来先进核裂变能-ADS嬗变系统[J]. 中国科学院院刊, 2012, 27(3): 375-380. doi: 10.3969/j.issn.1000-3045.2012.03.017

    Zhan Wenlong, Xu Hushan. Advanced fission energy program—ADS transmutation system. Bulletin of the Chinese Academy of Sciences, 2012, 27(3): 375-380 doi: 10.3969/j.issn.1000-3045.2012.03.017
    [2]
    陈忠, 蒋洁琼, 王明煌, 等. 加速器驱动核废料嬗变次临界堆中子学初步设计分析[J]. 核科学与工程, 2013, 33(2): 180-185. doi: 10.3969/j.issn.0258-0918.2013.02.012

    Chen Zhong, Jiang Jieqiong, Wang Minghuang, et al. Preliminary neutronics design analysis on accelerator driven subcritical reactor for nuclear waste transmutation. Nuclear Science and Engineering, 2013, 33(2): 180-185 doi: 10.3969/j.issn.0258-0918.2013.02.012
    [3]
    赵志祥, 夏海鸿. 加速器驱动次临界系统(ADS)与核能可持续发展[J]. 中国工程科学, 2008, 10(3): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200803012.htm

    Zhao Zhixiang, Xia Haihong. Researches on ADS and the sustainable development of the nuclear energy. Engineering Sciences, 2008, 10(3): 66-72 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200803012.htm
    [4]
    罗璋琳, 史永谦, 潘泽飞. 实验反应堆物理导论[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011.

    Luo Zhanglin, Shi Yongqian, Pan Zefei. Introduction to experimental reactor physics. Harbin: Harbin Engineering University Press, 2011
    [5]
    Bécares V, Villamarín D, Fernández-Ordóñez M, et al. Validation of ADS reactivity monitoring techniques in the Yalina-booster subcritical assembly[J]. Ann Nucl Energy, 2013, 53: 331-341. doi: 10.1016/j.anucene.2012.10.001
    [6]
    Uyttenhove W, Baeten P, Ban G, et al. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project[J]. IEEE Trans Nuclear Science, 2013, 59(6): 3194-3200. https://ieeexplore.ieee.org/document/6334474/
    [7]
    Naing W, Tsuji M, Shimazu Y. The effect of neutron source distribution on subcriticality measurement of pressurized water reactors using the modified neutron source multiplication method[J]. Journal of Nuclear Science and Technology, 2003, 40(11): 951-958.
    [8]
    Blaise P, Mellier F, Fougeras P. Application of the modified source multiplication(MSM) technique to subcritical reactivity worth measurements in thermal and fast reactor systems[J]. IEEE Trans Nuclear Science, 2011, 58(3): 1166-1176. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005740387
    [9]
    Yang Yingkun. Preliminary study of subcriticality monitoring methods in accelerator driven subcritical systems. Beijing: University of Chinese Academy of Sciences, 2015: 30-40
    [10]
    Pyeon C. Neutronics on solid Pb-Bi in accelerator-driven system with 100 MeV protons at Kyoto University critical assembly[R]. Reseach Reactor Institute, Kyoto University, 2015.
    [11]
    Wang Dong, Yu Shengpeng, Wang Guozhong, et al. MCAM 5: An advanced interface program for multiple Monte Carlo codes[C]//Proceedings of the SNA+ MC 2013—Joint International Conference on Supercomputing in Nuclear Applications+ Monte Carlo. 2014.
    [12]
    Chen Zhenping, Zheng Huaqing, Sun Guangyao, et al. Preliminary study on CAD-based method of characteristics for neutron transport calculation[J]. Chinese Physics C, 2014, 38: 058201. doi: 10.1088/1674-1137/38/5/058201
    [13]
    Li Ying, Lu Lei, Ding Aiping, et al. Benchmarking of MCAM 4.0 with the ITER 3D model[J]. Fusion Engineering and Design, 2007, 82(15): 2861-2866. https://www.sciencedirect.com/science/article/pii/S0920379607000762
    [14]
    Wu Yican. CAD-based interface programs for fusion neutron transport simulation[J]. Fusion Engineering and Design, 2009, 84(7): 1987-1992. https://www.sciencedirect.com/science/article/pii/S0920379608004948
    [15]
    Song Jing, Sun Guangyao, Zheng Huaqing, et al. Benchmarking of super Monte Carlo simulation program SuperMC 2[C]//Proceedings of the SNA+ MC 2013—Joint International Conference on Supercomputing in Nuclear Applications+ Monte Carlo. 2014.
    [16]
    Wu Yican, Chen Zhibin, Hu Liqin, et al. Identification of safety gaps for fusion demonstration reactors[J]. Nature Energy, 2016, 1: 16154. https://www.nature.com/articles/nenergy2016154
    [17]
    Wu Yican, Song Jing, Zheng Huaqing, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J]. Ann Nucl Energy, 2015, 82: 161-168. https://sna-and-mc-2013-proceedings.edpsciences.org/articles/snamc/abs/2014/01/snamc2013_06022/snamc2013_06022.html
    [18]
    曾勤, 邹俊, 许德政, 等. 315中子/42光子耦合细群核数据库HENDL3.0/FG研发[J]. 核科学与工程, 2011, 31(4): 360-364. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201104014.htm

    Zeng Qin, Zou Jun, Xu Dezheng, et al. Development of fine-group(315n/42γ) cross section library ENDL3. 0/FG for fusion-fission hybrid systems. Journal of Nuclear Science and Technology, 2011, 31(4): 360-364 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201104014.htm
  • Relative Articles

    [1]Wang Naizhi, Wu Hongchao, Wang Kan. Fast leading-edge pulse emission and spatial combination of solid-state active phased array[J]. High Power Laser and Particle Beams, 2023, 35(5): 053003. doi: 10.11884/HPLPB202335.220338
    [2]Wu Zhe, Guan Xianghe, Ji Lailin, Hua Yilin, Gao Yanqi, Sui Zhan, Chen Huacai. Research on multi-pass amplification characteristics of Yb:CNGG active mirror[J]. High Power Laser and Particle Beams, 2023, 35(3): 031003. doi: 10.11884/HPLPB202335.220261
    [3]Wang Sihao, Liao Cheng, Shang Yuping, Zhang Runwu. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams, 2021, 33(4): 043002. doi: 10.11884/HPLPB202133.200331
    [4]WANG Liandong. Introduction for Special Issue[J]. High Power Laser and Particle Beams, 2019, 31(10): 103200.
    [5]Que Weiyan. Cognitive operations and intelligentizing characterization for battlefield electromagnetic operational environment[J]. High Power Laser and Particle Beams, 2018, 30(4): 043201. doi: 10.11884/HPLPB201830.170377
    [6]Que Weiyan. Concept analysis of electromagnetic operational environment[J]. High Power Laser and Particle Beams, 2017, 29(11): 113206. doi: 10.11884/HPLPB201729.170272
    [7]Wang Yuan, Jiang Xiaoguo, Zhang Xiaoding, Li Yiding, Yang Guojun, Li Jin. Compatibility design for instantaneous electron beam parameters measurement system under complex electromagnetism interference[J]. High Power Laser and Particle Beams, 2017, 29(11): 113205. doi: 10.11884/HPLPB201729.170154
    [8]Lin Aoxiang, Tang Xuan, Zhan Huan, Li Qi, Wang Yuying, Peng Kun, Ni Li, Wang Xiaolong, Gao Cong, You Yunfeng, Jia Zhaonian, Li Yuwei, You A’ni, Lin Honghuan, Wang Jianjun, Jing Feng. 国产有源光纤成功实现6 kW激光输出[J]. High Power Laser and Particle Beams, 2016, 28(12): 129901. doi: 10.11884/HPLPB201628.160490
    [9]Du Xin, Xie Shuguo, Hao Xuchun, Wang Chao. An electromagnetic interference source imaging algorithm of multi-resolution partitions[J]. High Power Laser and Particle Beams, 2015, 27(10): 103223. doi: 10.11884/HPLPB201527.103223
    [10]Wang Bo, Li Yudong, Guo Qi, Wen Lin, Sun Jing, Wang Fan, Zhang Xingyao, Ma Liya. Neutron irradiation induced displacement damage effects on CMOS active pixel image sensor[J]. High Power Laser and Particle Beams, 2015, 27(09): 094001. doi: 10.11884/HPLPB201527.094001
    [11]He Yong, Song Shengyi, Guan Yongchao, Cheng Cheng, Gao Guishan, Li Yexun, Qiu Xu. Quantitative expression of sliding contact resistance between armature and rail in railgun[J]. High Power Laser and Particle Beams, 2014, 26(04): 045007. doi: 10.11884/HPLPB201426.045007
    [12]wang haiyang, zhou yihong, li jiayin, xu ligang, yu xiuyun. LNA malfunctions under intentional electromagnetic interference[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]niu zhifeng, guo jianzeng, ren xiaoming, wang zhenhua. Numerical simulation of large aspect ratio rectangle resonators[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [14]wang zhiqun, yao shun, cui bifeng, wang zhiyong, shen guangdi. Steady state thermal analysis of multi-active zone tunnel regeneration semiconductor laser[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [15]feng chen, feng guoying, huang yu, li wei, li gang, zhang qiuhui. Misalignment analysis of an active resonator using eigenvector method[J]. High Power Laser and Particle Beams, 2009, 21(07): 0- .
    [16]xu mei-jian, yu hai-wu, duan wen-tao, jiang xin-ying, yuan xiao-dong, lin dong-hui, wei xiao-feng. Output performance of solid state heat capacity laser with ctiv-mirror and dichromatic coatings[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- .
    [17]yu dao-jie, niu zhong-xia, yang jian-hong, mo you-quan, zhou dong-fang, hu tao. Characteristics of active lens antenna based on plasma[J]. High Power Laser and Particle Beams, 2004, 16(07): 0- .
    [18]xie yan-zhao, sun bei-yun, zhou hui-, wang zan-ji, wang qun-shu, . High-altitude electromagnetic pulse environment over the lossy ground[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
    [19]xiao xiao-guang, hu ke-song, li zheng-hong, li ming. Description of electrons motion in an alpha magnet[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
  • Cited by

    Periodical cited type(4)

    1. 黄璐莹,陈润丰,石亮,徐逸凡. 基于软件无线电平台的电磁信号数据表征方法. 移动通信. 2022(02): 95-100 .
    2. 陈鑫,邱扬,田锦,左江江,陆希成,杨春,徐亮,赵仁仲. 基于试验结果的电磁兼容性量化表征技术研究. 强激光与粒子束. 2021(12): 76-83 . 本站查看
    3. 沈飞,李争,许雄,李林,樊玉琦,周红平,郭凯,郭忠义. 面向雷达对抗的电磁态势认知问题研究. 强激光与粒子束. 2019(09): 74-78 . 本站查看
    4. 许雄,吴若无,韩慧,郝晓军,王华兵,曾勇虎,汪连栋. 雷达信号环境测量系统的设计与测试. 强激光与粒子束. 2019(10): 41-45 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.3 %FULLTEXT: 22.3 %META: 74.9 %META: 74.9 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.6 %其他: 6.6 %其他: 0.1 %其他: 0.1 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %[]: 0.1 %[]: 0.1 %上海: 2.8 %上海: 2.8 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %北京: 15.2 %北京: 15.2 %十堰: 0.5 %十堰: 0.5 %南京: 1.1 %南京: 1.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.8 %天津: 0.8 %宣城: 0.5 %宣城: 0.5 %密蘇里城: 0.6 %密蘇里城: 0.6 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.1 %张家口: 0.1 %成都: 0.5 %成都: 0.5 %扬州: 0.4 %扬州: 0.4 %新乡: 0.1 %新乡: 0.1 %昆明: 0.4 %昆明: 0.4 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.5 %杭州: 1.5 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.3 %济南: 0.3 %深圳: 0.1 %深圳: 0.1 %温州: 0.4 %温州: 0.4 %渭南: 0.1 %渭南: 0.1 %漯河: 1.8 %漯河: 1.8 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 18.2 %芒廷维尤: 18.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %蒙哥马利: 0.3 %蒙哥马利: 0.3 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 37.6 %西宁: 37.6 %西安: 0.6 %西安: 0.6 %西雅图: 0.3 %西雅图: 0.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.3 %运城: 0.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.5 %青岛: 0.5 %韩国大邱: 0.1 %韩国大邱: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他ChinaIndiaTaiwan, China[]上海中山临汾丹东丽水北京十堰南京南昌南通台州合肥哈尔滨哥伦布唐山嘉兴天津宣城密蘇里城常州广州张家口成都扬州新乡昆明晋城普洱杭州武汉沈阳济南深圳温州渭南漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州蒙哥马利衡水衡阳衢州西宁西安西雅图贵阳运城邯郸郑州重庆长沙长治阳泉青岛韩国大邱马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (1402) PDF downloads(189) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return