Citation: | Zheng Zheng, Ding Qianxue, Zhou Yan. Variance reduction method based on adjoint discrete ordinate[J]. High Power Laser and Particle Beams, 2018, 30: 026004. doi: 10.11884/HPLPB201830.170223 |
[1] |
Wagner J C. Acceleration of Monte Carlo shielding calculations with an automated variance reduction technique and parallel processing[R]. University Park, 1997.
|
[2] |
Wagner J C, Haghighat A. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function[J]. Nuclear Science and Engineering, 1998, 128: 186-208. doi: 10.13182/NSE98-2
|
[3] |
Haghighat A, Wagner J C. Monte Carlo variance reduction with deterministic importance functions[J]. Progress in Nuclear Energy, 2003, 42(1): 25-53. doi: 10.1016/S0149-1970(02)00002-1
|
[4] |
Blakeman E D, Peplow D E, Wagner J C, et al. PWR facility dose modeling using MCNP5 and the CADIS/ADVANTG variance-reduction methodology[R]. ORNL/TM-2007/133, 2007.
|
[5] |
Peplow D E, Evans T M, Wagner J C. Simultaneous optimization of tallies in difficult shielding problems[J]. Nuclear Technology, 2008, 168: 785-792.
|
[6] |
Wagner J C, Peplow P E, Evans T M. Automated variance reduction applied to nuclear well-logging problems[J]. Nuclear Technology, 2009, 168: 799-809. doi: 10.13182/NT09-A9309
|
[7] |
Vasiliev A, Ferroukhi H, Zimmermann M A, et al. Development of a CASMO-4/SIMULATE-3/MCNPX calculation scheme for PWR fast neutron fluence analysis and validation against RPV scraping test data[J]. Annals of Nuclear Energy, 2007, 34: 615-627. doi: 10.1016/j.anucene.2007.02.020
|
[8] |
Fero A H. SORCERY user manual[R]. LTR- R EA-06-74, 2006.
|
[9] |
X-5 Monte Carlo Team, MCNP - Ageneral Monte Carlo N-Particle transport code[R]. LA-UR-03-1987, 2003.
|