Volume 30 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
Yan Yucheng, Liu Mingzhe, Fu Yu, et al. Numerical calculation of detection efficiency of response functions of Segmented Gamma Scanning system[J]. High Power Laser and Particle Beams, 2018, 30: 066001. doi: 10.11884/HPLPB201830.170245
Citation: Yan Yucheng, Liu Mingzhe, Fu Yu, et al. Numerical calculation of detection efficiency of response functions of Segmented Gamma Scanning system[J]. High Power Laser and Particle Beams, 2018, 30: 066001. doi: 10.11884/HPLPB201830.170245

Numerical calculation of detection efficiency of response functions of Segmented Gamma Scanning system

doi: 10.11884/HPLPB201830.170245
  • Received Date: 2017-08-21
  • Rev Recd Date: 2017-12-15
  • Publish Date: 2018-06-15
  • The research of Segmented Gamma Scanning(SGS) technique is mainly focused on two aspects: self-absorption correction of waste drum and efficiency calibration of the system. For the purpose of self-absorption correction, it is necessary to calculate the scanning efficiency. In this paper, a mathematical model was established for the correction, which was based on the spatial distribution of radioactive waste barrels, collimators and HPGe detectors in SGS detection systems. In addition, calculation of the detection efficiency of midpoint sources (Cs-137) in low and intermediate level radioactive waste steel drum was managed. Then the calculation corresponding to efficiency function based on MCNP method was operated as well. The results of the two methods were compared with the numerical calculations. It was found that the results from numerical calculation was usually larger than that from MCNP simulation and the maximum relative error reached 143.26% whereas the average error was 37.15%. After correction the maximum error was reduced down to 17.22% and the average value was 4.54%, which indicates that the model is scientific for the temporary storage, transportation and final disposal of the waste bucket.
  • loading
  • [1]
    Krings T, Mauerhofer E. Reconstruction of the isotope activity content of heterogeneous nuclear waste drums[J]. Applied Radiation and Isotopes, 2012, 70(7): 1100-1103. doi: 10.1016/j.apradiso.2011.11.021
    [2]
    Hsue S. Recent advances in SGS analysis[C]//Proc 3rd Int Conf. 1987.
    [3]
    吕锋, 曹斌, 辛标, 等. 可移动式高分辨率分段γ扫描现场测量装置的研制[J]. 原子能科学技术, 1998, 32(3): 239-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS803.008.htm

    Lü Feng, Cao Bin, Xin Biao, et al. Development of transportable segmented gamma ray scanning system for measuring on site. Atomic Energy Science and Technology, 1998, 32(3): 239-244 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS803.008.htm
    [4]
    高彦锋, 王瑞宏, 张孝泽, 等. MCNP程序在核技术中的应用研究[J]. 计算物理, 1995, 12(2): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199502015.htm

    Gao Yanfeng, Wang Ruihong, Zhang Xiaoze, et al. MCNP code further development and applications to the nuclear technique. Chinese Journal of Computational Physics, 1995, 12(2): 234-240 https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199502015.htm
    [5]
    钱雅兰, 王德忠, 顾卫国, 等. 核废物桶检测中探测效率的数值方法[J]. 上海交通大学学报, 2017, 51(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201701001.htm

    Qian Yalan, Wang Dezhong, Gu Weiguo, et al. Numerical method of detection efficiency for radioactive waste drum. Journal of Shanghai Jiao Tong University, 2017, 51(1): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201701001.htm
    [6]
    EJ1042-1996, 低、中水平放射性固体废物包装容器钢桶[S].

    EJ1042-1996, Packaging container for low-and intermediate-level radioactive solid wastes steel drum
    [7]
    吴治华. 原子核物理实验方法[M]. 北京: 原子能出版社, 1997.

    Wu Zhihua. Experimental methods of nuclear physics. Beijing: Atomic Energy Press, 1997
    [8]
    易珂. 中低放射性废物活度无源γ测量实验及模拟计算研究[D]. 上海: 上海交通大学, 2009.

    Yi Ke. Experimental study and simulation of the passive gamma measurement on low and intermediate level radioactive waste. Shanghai: Shanghai Jiao Tong University, 2009
    [9]
    徐淑艳. 蒙特卡罗方法在实验核物理中的应用[M]. 北京: 原子能出版社, 2006.

    Xu Shuyan. The application of Monte Carlo method in experimental nuclear physics. Beijing: Atomic Energy Press, 2006
    [10]
    秦超, 王德忠, 于文丹, 等. 体源样品自吸收修正因子的蒙卡方法研究[J]. 核技术, 2011, 34 (6): 437-441. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201106010.htm

    Qin Chao, Wang Dezhong, Yu Wendan, et al. Gamma ray self attenuation correction for bulk sample by Mont-Carlo method. Nuclear Techniques, 2011, 34 (6): 437-441 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201106010.htm
    [11]
    郝润龙. 体源自吸收修正的研究[J]. 计量学报, 1991, 12(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199101010.htm

    Hao Runlong. A study of self-absorption correction for the volume source. Acta Metrologica Sinica, 1991, 12(1): 65-71 https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199101010.htm
    [12]
    胡广春, 龚建, 刘晓亚, 等. 体源探测效率计算及修正方法研究[J]. 核电子学与探测技术, 2005, 25(6): 798-802. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200506061.htm

    Hu Guangchun, Gong Jian, Liu Xiaoya, et al. Study of calculation and correction method of detection efficiency of the volume source. Nuclear Electronics & Detection Technology, 2005, 25(6): 798-802 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200506061.htm
    [13]
    Hendriks P H, Maucec M, de Meijer R J. MCNP modelling of scintillation-detector γ-ray spectra from natural radionuclides[J]. Applied Radiation and Isotopes, 2002, 57(3): 449-457.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (925) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return