Citation: | Yan Yucheng, Liu Mingzhe, Fu Yu, et al. Numerical calculation of detection efficiency of response functions of Segmented Gamma Scanning system[J]. High Power Laser and Particle Beams, 2018, 30: 066001. doi: 10.11884/HPLPB201830.170245 |
[1] |
Krings T, Mauerhofer E. Reconstruction of the isotope activity content of heterogeneous nuclear waste drums[J]. Applied Radiation and Isotopes, 2012, 70(7): 1100-1103. doi: 10.1016/j.apradiso.2011.11.021
|
[2] |
Hsue S. Recent advances in SGS analysis[C]//Proc 3rd Int Conf. 1987.
|
[3] |
吕锋, 曹斌, 辛标, 等. 可移动式高分辨率分段γ扫描现场测量装置的研制[J]. 原子能科学技术, 1998, 32(3): 239-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS803.008.htm
Lü Feng, Cao Bin, Xin Biao, et al. Development of transportable segmented gamma ray scanning system for measuring on site. Atomic Energy Science and Technology, 1998, 32(3): 239-244 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS803.008.htm
|
[4] |
高彦锋, 王瑞宏, 张孝泽, 等. MCNP程序在核技术中的应用研究[J]. 计算物理, 1995, 12(2): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199502015.htm
Gao Yanfeng, Wang Ruihong, Zhang Xiaoze, et al. MCNP code further development and applications to the nuclear technique. Chinese Journal of Computational Physics, 1995, 12(2): 234-240 https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199502015.htm
|
[5] |
钱雅兰, 王德忠, 顾卫国, 等. 核废物桶检测中探测效率的数值方法[J]. 上海交通大学学报, 2017, 51(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201701001.htm
Qian Yalan, Wang Dezhong, Gu Weiguo, et al. Numerical method of detection efficiency for radioactive waste drum. Journal of Shanghai Jiao Tong University, 2017, 51(1): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201701001.htm
|
[6] |
EJ1042-1996, 低、中水平放射性固体废物包装容器钢桶[S].
EJ1042-1996, Packaging container for low-and intermediate-level radioactive solid wastes steel drum
|
[7] |
吴治华. 原子核物理实验方法[M]. 北京: 原子能出版社, 1997.
Wu Zhihua. Experimental methods of nuclear physics. Beijing: Atomic Energy Press, 1997
|
[8] |
易珂. 中低放射性废物活度无源γ测量实验及模拟计算研究[D]. 上海: 上海交通大学, 2009.
Yi Ke. Experimental study and simulation of the passive gamma measurement on low and intermediate level radioactive waste. Shanghai: Shanghai Jiao Tong University, 2009
|
[9] |
徐淑艳. 蒙特卡罗方法在实验核物理中的应用[M]. 北京: 原子能出版社, 2006.
Xu Shuyan. The application of Monte Carlo method in experimental nuclear physics. Beijing: Atomic Energy Press, 2006
|
[10] |
秦超, 王德忠, 于文丹, 等. 体源样品自吸收修正因子的蒙卡方法研究[J]. 核技术, 2011, 34 (6): 437-441. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201106010.htm
Qin Chao, Wang Dezhong, Yu Wendan, et al. Gamma ray self attenuation correction for bulk sample by Mont-Carlo method. Nuclear Techniques, 2011, 34 (6): 437-441 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201106010.htm
|
[11] |
郝润龙. 体源自吸收修正的研究[J]. 计量学报, 1991, 12(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199101010.htm
Hao Runlong. A study of self-absorption correction for the volume source. Acta Metrologica Sinica, 1991, 12(1): 65-71 https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199101010.htm
|
[12] |
胡广春, 龚建, 刘晓亚, 等. 体源探测效率计算及修正方法研究[J]. 核电子学与探测技术, 2005, 25(6): 798-802. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200506061.htm
Hu Guangchun, Gong Jian, Liu Xiaoya, et al. Study of calculation and correction method of detection efficiency of the volume source. Nuclear Electronics & Detection Technology, 2005, 25(6): 798-802 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200506061.htm
|
[13] |
Hendriks P H, Maucec M, de Meijer R J. MCNP modelling of scintillation-detector γ-ray spectra from natural radionuclides[J]. Applied Radiation and Isotopes, 2002, 57(3): 449-457.
|
[1] | Wei Yihong, Li Xiangqiang, Su Yiyu, Zhang Jianqiong, Wang Qingfeng. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams, 2024, 36(7): 073005. doi: 10.11884/HPLPB202436.230421 |
[2] | Li Yi, Wang Haomiao, Zhang Liang, He Yuwen, Zhou Kun, Du Weichuan, He Linan, Hu Yao, Wu Deyong, Gao Songxin, Tang Chun. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35(11): 111002. doi: 10.11884/HPLPB202335.230073 |
[3] | Zhou Hao, Cai Weihong, Wang Jiaoyin, Li Tianming. Research on mechanism of transparent cathode in relativistic magnetron[J]. High Power Laser and Particle Beams, 2021, 33(7): 073007. doi: 10.11884/HPLPB202133.210089 |
[4] | Shi Difu, Qian Baoliang. Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode[J]. High Power Laser and Particle Beams, 2021, 33(7): 073003. doi: 10.11884/HPLPB202133.210124 |
[5] | Chu Kairong, Sheng Xing, Li Dongfeng, Dou Yue, Zhong Yong, Zhang Shiqiao. Development of X-band 50MW klystron[J]. High Power Laser and Particle Beams, 2020, 32(10): 103012. doi: 10.11884/HPLPB202032.200211 |
[6] | Tan Weibing, Cao Yibing, Song Wei, Chen Changhua, Li Xiaoze, Zhang Ligang, Zhu Xiaoxin. A Ku band high efficiency coaxial relativistic backwardwave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2016, 28(09): 093002. doi: 10.11884/HPLPB201628.151098 |
[7] | Liang Qinjin, Chen Shitao, Yu Chuan. Development of 1.2 kW C band solid-state high efficiency GaN microwave source[J]. High Power Laser and Particle Beams, 2014, 26(10): 103002. doi: 10.11884/HPLPB201426.103002 |
[8] | Liu Meiqin, Liu Chunliang, Wang Hongguang, Bao Rong, Li Yansong, Fan Zhuangzhuang. RF input technology in A6 magnetron with diffraction output[J]. High Power Laser and Particle Beams, 2013, 25(10): 2636-2642. doi: 10.3788/HPLPB20132510.2636 |
[9] | Zhang Xuehui, Jiang Menghua, Liu Bin, Hui Yongling, Lei Hong, Li Qiang. High efficiency Nd:YVO4/LBO critical phase matching green laser[J]. High Power Laser and Particle Beams, 2013, 25(11): 2831-2835. doi: 10.3788/HPLPB20132511.2831 |
[10] | Tang Yongfu, Meng Lin, Li Hailong, Wang Bin, Yin Yong, Zhang Feina. Particle simulation of high-efficiency X-band dual-frequency coaxial relativistic backward-wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(10): 2415-2419. doi: 10.3788/HPLPB20122410.2415 |
[11] | su li, li tianming, li jiayin. Simulation and experiment on transparent cathode for relativistic magnetron[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[12] | zhang zhengquan, liu qingxiang, wu zhipeng, yang he. Series resonant converter based on HF AC-link technology[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[13] | li tianming, li jiayin, dong feifei, yu xiuyun, wang haiyang, li hao, zhou yihong. Self-magnetic field in relativistic magnetron[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- . |
[14] | yu xinhua, meng lin, niu xinjian. Design of 94 GHz second-harmonic complex cavity gyrotron with gradual transition[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- . |
[15] | zhang zhengquan, liu qingxiang, xiang xin, zhang pengpeng, wu zhipeng. High-frequency rectifying commutated converter[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- . |
[16] | he hu. Analysis of L-band high-efficiency gap-current magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- . |
[17] | li tian-ming, li jia-yin, ma wen-duo, zhang bing, yu xiu-yun, li hao, wang hai-yang, zhou yi-hong, zhang ting-wei, zou huan. An experimental invesigation of frequency-agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- . |
[18] | zou huan, li jia-yin, li tian-ming, wang hai-yang, zhang ting-wei, li hao, yu xiu-yun. Optimization of tunable bandwidth of agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- . |
[19] | li tian ming, li jia yin, sun da rui, yu xiu yun, wang hai yang, li hao, ge peng. Primary design of Sband tunable relativistic magnetron[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- . |
[20] | li tian-ming, li jia-yin, yu xiu-yun, ma wen-duo, ge peng. Prepulse effects on the characteristics of relativistic magnetron[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- . |
1. | 秦洪才,袁成卫,宁辉,孙云飞,张强,许亮,严鹏. 高功率平板波导螺旋阵列天线设计. 强激光与粒子束. 2021(02): 52-56 . ![]() |