Zhang Hongwei, Liu Chaoyang, Yu Zhihua, et al. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30: 073008. doi: 10.11884/HPLPB201830.170531
Citation: Yan Yucheng, Liu Mingzhe, Fu Yu, et al. Numerical calculation of detection efficiency of response functions of Segmented Gamma Scanning system[J]. High Power Laser and Particle Beams, 2018, 30: 066001. doi: 10.11884/HPLPB201830.170245

Numerical calculation of detection efficiency of response functions of Segmented Gamma Scanning system

doi: 10.11884/HPLPB201830.170245
  • Received Date: 2017-08-21
  • Rev Recd Date: 2017-12-15
  • Publish Date: 2018-06-15
  • The research of Segmented Gamma Scanning(SGS) technique is mainly focused on two aspects: self-absorption correction of waste drum and efficiency calibration of the system. For the purpose of self-absorption correction, it is necessary to calculate the scanning efficiency. In this paper, a mathematical model was established for the correction, which was based on the spatial distribution of radioactive waste barrels, collimators and HPGe detectors in SGS detection systems. In addition, calculation of the detection efficiency of midpoint sources (Cs-137) in low and intermediate level radioactive waste steel drum was managed. Then the calculation corresponding to efficiency function based on MCNP method was operated as well. The results of the two methods were compared with the numerical calculations. It was found that the results from numerical calculation was usually larger than that from MCNP simulation and the maximum relative error reached 143.26% whereas the average error was 37.15%. After correction the maximum error was reduced down to 17.22% and the average value was 4.54%, which indicates that the model is scientific for the temporary storage, transportation and final disposal of the waste bucket.
  • [1]
    Krings T, Mauerhofer E. Reconstruction of the isotope activity content of heterogeneous nuclear waste drums[J]. Applied Radiation and Isotopes, 2012, 70(7): 1100-1103. doi: 10.1016/j.apradiso.2011.11.021
    [2]
    Hsue S. Recent advances in SGS analysis[C]//Proc 3rd Int Conf. 1987.
    [3]
    吕锋, 曹斌, 辛标, 等. 可移动式高分辨率分段γ扫描现场测量装置的研制[J]. 原子能科学技术, 1998, 32(3): 239-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS803.008.htm

    Lü Feng, Cao Bin, Xin Biao, et al. Development of transportable segmented gamma ray scanning system for measuring on site. Atomic Energy Science and Technology, 1998, 32(3): 239-244 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS803.008.htm
    [4]
    高彦锋, 王瑞宏, 张孝泽, 等. MCNP程序在核技术中的应用研究[J]. 计算物理, 1995, 12(2): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199502015.htm

    Gao Yanfeng, Wang Ruihong, Zhang Xiaoze, et al. MCNP code further development and applications to the nuclear technique. Chinese Journal of Computational Physics, 1995, 12(2): 234-240 https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199502015.htm
    [5]
    钱雅兰, 王德忠, 顾卫国, 等. 核废物桶检测中探测效率的数值方法[J]. 上海交通大学学报, 2017, 51(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201701001.htm

    Qian Yalan, Wang Dezhong, Gu Weiguo, et al. Numerical method of detection efficiency for radioactive waste drum. Journal of Shanghai Jiao Tong University, 2017, 51(1): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201701001.htm
    [6]
    EJ1042-1996, 低、中水平放射性固体废物包装容器钢桶[S].

    EJ1042-1996, Packaging container for low-and intermediate-level radioactive solid wastes steel drum
    [7]
    吴治华. 原子核物理实验方法[M]. 北京: 原子能出版社, 1997.

    Wu Zhihua. Experimental methods of nuclear physics. Beijing: Atomic Energy Press, 1997
    [8]
    易珂. 中低放射性废物活度无源γ测量实验及模拟计算研究[D]. 上海: 上海交通大学, 2009.

    Yi Ke. Experimental study and simulation of the passive gamma measurement on low and intermediate level radioactive waste. Shanghai: Shanghai Jiao Tong University, 2009
    [9]
    徐淑艳. 蒙特卡罗方法在实验核物理中的应用[M]. 北京: 原子能出版社, 2006.

    Xu Shuyan. The application of Monte Carlo method in experimental nuclear physics. Beijing: Atomic Energy Press, 2006
    [10]
    秦超, 王德忠, 于文丹, 等. 体源样品自吸收修正因子的蒙卡方法研究[J]. 核技术, 2011, 34 (6): 437-441. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201106010.htm

    Qin Chao, Wang Dezhong, Yu Wendan, et al. Gamma ray self attenuation correction for bulk sample by Mont-Carlo method. Nuclear Techniques, 2011, 34 (6): 437-441 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201106010.htm
    [11]
    郝润龙. 体源自吸收修正的研究[J]. 计量学报, 1991, 12(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199101010.htm

    Hao Runlong. A study of self-absorption correction for the volume source. Acta Metrologica Sinica, 1991, 12(1): 65-71 https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199101010.htm
    [12]
    胡广春, 龚建, 刘晓亚, 等. 体源探测效率计算及修正方法研究[J]. 核电子学与探测技术, 2005, 25(6): 798-802. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200506061.htm

    Hu Guangchun, Gong Jian, Liu Xiaoya, et al. Study of calculation and correction method of detection efficiency of the volume source. Nuclear Electronics & Detection Technology, 2005, 25(6): 798-802 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200506061.htm
    [13]
    Hendriks P H, Maucec M, de Meijer R J. MCNP modelling of scintillation-detector γ-ray spectra from natural radionuclides[J]. Applied Radiation and Isotopes, 2002, 57(3): 449-457.
  • Relative Articles

    [1]Wei Yihong, Li Xiangqiang, Su Yiyu, Zhang Jianqiong, Wang Qingfeng. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams, 2024, 36(7): 073005. doi: 10.11884/HPLPB202436.230421
    [2]Li Yi, Wang Haomiao, Zhang Liang, He Yuwen, Zhou Kun, Du Weichuan, He Linan, Hu Yao, Wu Deyong, Gao Songxin, Tang Chun. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35(11): 111002. doi: 10.11884/HPLPB202335.230073
    [3]Zhou Hao, Cai Weihong, Wang Jiaoyin, Li Tianming. Research on mechanism of transparent cathode in relativistic magnetron[J]. High Power Laser and Particle Beams, 2021, 33(7): 073007. doi: 10.11884/HPLPB202133.210089
    [4]Shi Difu, Qian Baoliang. Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode[J]. High Power Laser and Particle Beams, 2021, 33(7): 073003. doi: 10.11884/HPLPB202133.210124
    [5]Chu Kairong, Sheng Xing, Li Dongfeng, Dou Yue, Zhong Yong, Zhang Shiqiao. Development of X-band 50MW klystron[J]. High Power Laser and Particle Beams, 2020, 32(10): 103012. doi: 10.11884/HPLPB202032.200211
    [6]Tan Weibing, Cao Yibing, Song Wei, Chen Changhua, Li Xiaoze, Zhang Ligang, Zhu Xiaoxin. A Ku band high efficiency coaxial relativistic backwardwave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2016, 28(09): 093002. doi: 10.11884/HPLPB201628.151098
    [7]Liang Qinjin, Chen Shitao, Yu Chuan. Development of 1.2 kW C band solid-state high efficiency GaN microwave source[J]. High Power Laser and Particle Beams, 2014, 26(10): 103002. doi: 10.11884/HPLPB201426.103002
    [8]Liu Meiqin, Liu Chunliang, Wang Hongguang, Bao Rong, Li Yansong, Fan Zhuangzhuang. RF input technology in A6 magnetron with diffraction output[J]. High Power Laser and Particle Beams, 2013, 25(10): 2636-2642. doi: 10.3788/HPLPB20132510.2636
    [9]Zhang Xuehui, Jiang Menghua, Liu Bin, Hui Yongling, Lei Hong, Li Qiang. High efficiency Nd:YVO4/LBO critical phase matching green laser[J]. High Power Laser and Particle Beams, 2013, 25(11): 2831-2835. doi: 10.3788/HPLPB20132511.2831
    [10]Tang Yongfu, Meng Lin, Li Hailong, Wang Bin, Yin Yong, Zhang Feina. Particle simulation of high-efficiency X-band dual-frequency coaxial relativistic backward-wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(10): 2415-2419. doi: 10.3788/HPLPB20122410.2415
    [11]su li, li tianming, li jiayin. Simulation and experiment on transparent cathode for relativistic magnetron[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [12]zhang zhengquan, liu qingxiang, wu zhipeng, yang he. Series resonant converter based on HF AC-link technology[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]li tianming, li jiayin, dong feifei, yu xiuyun, wang haiyang, li hao, zhou yihong. Self-magnetic field in relativistic magnetron[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [14]yu xinhua, meng lin, niu xinjian. Design of 94 GHz second-harmonic complex cavity gyrotron with gradual transition[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [15]zhang zhengquan, liu qingxiang, xiang xin, zhang pengpeng, wu zhipeng. High-frequency rectifying commutated converter[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [16]he hu. Analysis of L-band high-efficiency gap-current magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]li tian-ming, li jia-yin, ma wen-duo, zhang bing, yu xiu-yun, li hao, wang hai-yang, zhou yi-hong, zhang ting-wei, zou huan. An experimental invesigation of frequency-agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
    [18]zou huan, li jia-yin, li tian-ming, wang hai-yang, zhang ting-wei, li hao, yu xiu-yun. Optimization of tunable bandwidth of agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [19]li tian ming, li jia yin, sun da rui, yu xiu yun, wang hai yang, li hao, ge peng. Primary design of Sband tunable relativistic magnetron[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [20]li tian-ming, li jia-yin, yu xiu-yun, ma wen-duo, ge peng. Prepulse effects on the characteristics of relativistic magnetron[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
  • Cited by

    Periodical cited type(1)

    1. 秦洪才,袁成卫,宁辉,孙云飞,张强,许亮,严鹏. 高功率平板波导螺旋阵列天线设计. 强激光与粒子束. 2021(02): 52-56 . 本站查看

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.8 %FULLTEXT: 21.8 %META: 75.1 %META: 75.1 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.4 %其他: 8.4 %其他: 4.3 %其他: 4.3 %Canton: 0.1 %Canton: 0.1 %China: 1.0 %China: 1.0 %India: 0.2 %India: 0.2 %Indianapolis: 0.2 %Indianapolis: 0.2 %Iran (ISLAMIC Republic Of): 0.4 %Iran (ISLAMIC Republic Of): 0.4 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.5 %Pakistan: 0.5 %Seongnam-si: 0.2 %Seongnam-si: 0.2 %United States: 0.9 %United States: 0.9 %Vleuten: 0.5 %Vleuten: 0.5 %[]: 1.8 %[]: 1.8 %三明: 0.1 %三明: 0.1 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %佛山: 0.2 %佛山: 0.2 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 3.1 %北京: 3.1 %南京: 0.3 %南京: 0.3 %博阿努瓦: 0.2 %博阿努瓦: 0.2 %台州: 0.7 %台州: 0.7 %哈尔科夫: 0.4 %哈尔科夫: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %孟买: 0.2 %孟买: 0.2 %安卡拉: 0.2 %安卡拉: 0.2 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %宿州: 0.1 %宿州: 0.1 %密蘇里城: 0.2 %密蘇里城: 0.2 %岳阳: 0.1 %岳阳: 0.1 %巴黎: 0.2 %巴黎: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 0.1 %张家口: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 0.1 %扬州: 0.1 %无锡: 0.2 %无锡: 0.2 %昭通: 0.1 %昭通: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.5 %杭州: 0.5 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.1 %桂林: 0.1 %武汉: 0.5 %武汉: 0.5 %汉堡: 0.2 %汉堡: 0.2 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.1 %泉州: 0.1 %济南: 0.2 %济南: 0.2 %海法: 0.2 %海法: 0.2 %深圳: 0.1 %深圳: 0.1 %湖州: 0.3 %湖州: 0.3 %湘西: 0.5 %湘西: 0.5 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.6 %绵阳: 0.6 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 36.2 %芒廷维尤: 36.2 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.2 %莫斯科: 0.2 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 26.3 %西宁: 26.3 %西安: 0.7 %西安: 0.7 %贵阳: 0.2 %贵阳: 0.2 %贺州: 0.1 %贺州: 0.1 %运城: 1.1 %运城: 1.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.3 %长沙: 1.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.1 %阿什本: 0.1 %首尔: 0.2 %首尔: 0.2 %其他其他CantonChinaIndiaIndianapolisIran (ISLAMIC Republic Of)Korea Republic ofPakistanSeongnam-siUnited StatesVleuten[]三明上海东莞中山丹东丽水伊斯坦布尔佛山保定兰州北京南京博阿努瓦台州哈尔科夫哥伦布孟买安卡拉安康宣城宿州密蘇里城岳阳巴黎广州张家口成都扬州无锡昭通普洱杭州株洲格兰特县桂林武汉汉堡沈阳泉州济南海法深圳湖州湘西漯河烟台石家庄福州秦皇岛绵阳肇庆芒廷维尤芝加哥苏州莫斯科衢州襄阳西宁西安贵阳贺州运城邯郸郑州重庆长春长沙长治阳泉阿什本首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (979) PDF downloads(124) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return