Volume 30 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
Zhu Jianyu, Li Rui, Huang Meng, et al. Improving calculation efficiency of neutron multiplicity counting by sequential detection events simulation[J]. High Power Laser and Particle Beams, 2018, 30: 026003. doi: 10.11884/HPLPB201830.170256
Citation: Zhu Jianyu, Li Rui, Huang Meng, et al. Improving calculation efficiency of neutron multiplicity counting by sequential detection events simulation[J]. High Power Laser and Particle Beams, 2018, 30: 026003. doi: 10.11884/HPLPB201830.170256

Improving calculation efficiency of neutron multiplicity counting by sequential detection events simulation

doi: 10.11884/HPLPB201830.170256
  • Received Date: 2017-06-21
  • Rev Recd Date: 2017-09-22
  • Publish Date: 2018-02-15
  • Neutron multiplicity counting (NMC) has been widely used in many fields related to non-destructive nuclear material measurement, such as nuclear material protection control and accounting, arms control verification and so on. Developing simulation tools, and carrying out numerical experiments are important means in the research on the application of NMC, which also become one important area of neutron transport simulation. This paper presents a new method to calculate NMC by sequential detection events simulation. By realizing the on-line NMC calculation, based on JMCT particle transport simulation code, the program to simulate neutron multiplicity counting, JMCT_NMC, was developed. This paper also presents some results of NMC calculation examples to test the code, and comparison of the time consumption of JMCT_NMC and traditional method. In JMCT_NMC code, by getting rid of the large data storage requirement, it is possible to simulate neutron multiplicity with large event number and high calculation efficiency.
  • loading
  • [1]
    张全虎. 国家安全地球物理丛书(十一)——地球物理应用前沿[M]. 西安: 西安地图出版社, 2015: 201-206.

    Zhang Quanhu. National safety geophysics series (Eleventh)—Frontiers of geophysical applications. Xi'an: Xi'an Cartographic Publishing House, 2015: 201-206
    [2]
    Peerani P, Ferrer M. Assessment of uncertainties in neutron multiplicity counting[J]. Nuclear Instruments and Methods in Physics Research A, 2008, 589(2): 304-309. doi: 10.1016/j.nima.2008.02.021
    [3]
    Langner D G, Krick M S, Stewart J E, et al. The state-of-the-art of thermal neutron multiplicity counting[R]. LA-UR-97-2734, 1997.
    [4]
    易凌帆, 颜拥军, 周剑良, 等. 利用MCNPX模拟中子多重性脉冲序列采集[J]. 核电子学与探测技术, 2016, 36(6): 562-564. doi: 10.3969/j.issn.0258-0934.2016.06.002

    Yi Lingfan, Yan Yongjun, Zhou Jianliang, et al. The simulation of neutron multiplicity pulse train acquisition by using MCNPX. Nuclear Electronics & Detection Technology, 2016, 36(6): 562-564 doi: 10.3969/j.issn.0258-0934.2016.06.002
    [5]
    Dolan J, Flaska M, Poitrasson-Riviere A, et al. Plutonium measurements with a fast-neutron multiplicity counter for nuclear safeguards applications[J]. Nuclear Instruments and Methods in Physics Research A, 2014, 763(6): 565-574.
    [6]
    Mueller J, Mattingly J. Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies[J]. Nuclear Instruments and Methods in Physics Research A, 2016, 825(1): 87-92.
    [7]
    许鹏, 徐野, 周满, 等. 铀属性测量中的时间关联符合法研究进展[J]. 核电子学与探测技术, 2016, 36(6): 602-606. doi: 10.3969/j.issn.0258-0934.2016.06.011

    Xu Peng, Xu Ye, Zhou Man, et al. Progress of time-correlated coincidence method in measurement of uranium attributes. Nuclear Electronics & Detection Technology, 2016, 36(6): 602-606 doi: 10.3969/j.issn.0258-0934.2016.06.011
    [8]
    杨师俨, 何曼丽, 蒋丹枫, 等. 反应堆235U裂变源辐射防护材料的优化设计[J]. 计算物理, 2017, 34(1): 73-81. doi: 10.3969/j.issn.1001-246X.2017.01.009

    Yang Shiyan, He Manli, Jiang Danfeng, et al. Optimization design of radiation shielding materials for 235U fission source in reactor. Chinese Journal of Computational Physics, 2017, 34(1): 73-81 doi: 10.3969/j.issn.1001-246X.2017.01.009
    [9]
    胡世鹏, 刘知贵, 张活力, 等. 诱发核部件裂变探测技术仿真研究[J]. 西南科技大学学报, 2012, 27(1): 60-64. doi: 10.3969/j.issn.1671-8755.2012.01.014

    Hu Shipeng, Liu Zhigui, Zhang Huoli, et al. Simulation of nuclear component detection technology for induced fission. Journal of Southwest University of Science and Technology, 2012, 27(1): 60-64 doi: 10.3969/j.issn.1671-8755.2012.01.014
    [10]
    Zhou Hao, Lin Hongtao, Liu Guorong. A neutron multiplicity analysis method for uranium samples with liquid scintillators[J]. Nuclear Instruments and Methods in Physics Research A, 2015, 797(11): 70-76.
    [11]
    Chen Ligao, Gong Jian, Wang Kan, et al. Variance analysis for passive neutron multiplicity counting[J]. Nuclear Science and Techniques, 2015, 26(2): 58-62.
    [12]
    朱剑钰, 谢文雄, 李刚, 等. 核查技术数值实验平台中的时间关联符合测量与中子多重性测量[J]. 计算物理, 2015, 32(2): 213-219. doi: 10.3969/j.issn.1001-246X.2015.02.009

    Zhu Jianyu, Xie Wenxiong, Li Gang, et al. Time correlation and neutron multiplicity counting measurement in numerical experiment platform on verification technologies. Chinese Journal of Computational Physics, 2015, 32(2): 213-219 doi: 10.3969/j.issn.1001-246X.2015.02.009
    [13]
    Xie Wenxiong, Li Jianshang, Gong Jian, et al. Experimental study on the measurement of uranium casting enrichment by time-dependent coincidence method[J]. Chinese Physics C, 2013, 37: 106202.
    [14]
    Valentine T. MCNP-DSP Users Manual[R]. ORNL/TM-13334, 1996.
    [15]
    朱剑钰, 付元光, 徐雪峰. 源强对Rossi-α噪声分析的影响[J]. 强激光与粒子束, 2017, 29: 056006. doi: 10.11884/HPLPB201729.160184

    Zhu Jianyu, Fu Yuanguang, Xu Xuefeng. Influence of neutron source intensity on Rossi-α measurement. High Power Laser and Particle Beams, 2017, 29: 056006 doi: 10.11884/HPLPB201729.160184
    [16]
    Ensslin N, Harker W, Krick M, et al. Application guide to neutron multiplicity counting[R]. LA-13422-M, 1998.
    [17]
    李刚, 张宝印, 邓力, 等. 蒙特卡罗粒子输运程序JMCT研制[J]. 强激光与粒子束, 2013, 25(1): 158-162. doi: 10.3788/HPLPB20132501.0158

    Li Gang, Zhang Baoyin, Deng Li, et al. Development of Monte Carlo particle transport code JMCT. High Power Laser and Particle Beams, 2013, 25(1): 158-162 doi: 10.3788/HPLPB20132501.0158
    [18]
    秦桂明, 马彦, 付元光, 等. 反应堆的大规模几何分层建模[J]. 强激光与粒子束, 2017, 29: 036006. doi: 10.11884/HPLPB201729.160357

    Qin Guiming, Ma Yan, Fu Yuanguang, et al. Large-scale geometric modeling and management for reactor simulation. High Power Laser and Particle Beams, 2017, 29: 036006 doi: 10.11884/HPLPB201729.160357
    [19]
    郑俞, 全国萍, 李刚. 基于JLAMT可视化建模的JMCT模拟计算[J]. 强激光与粒子束, 2017, 29: 036017. doi: 10.11884/HPLPB201628.160291

    Zheng Yu, Quan Guoping, Li Gang. Simulation of JMCT based on JLAMT visualized modeling tool. High Power Laser and Particle Beams, 2017, 29: 036017 doi: 10.11884/HPLPB201628.160291
    [20]
    张玲玉, 李瑞, 李刚, 等. γ射线探测器响应函数的JMCT模拟计算[J]. 强激光与粒子束, 2017, 29: 016024. doi: 10.11884/HPLPB201729.160454

    Zhang Lingyu, Li Rui, Li Gang, et al. JMCT simulation of response functions for gamma-ray detectors. High Power Laser and Particle Beams, 2017, 29: 016024 doi: 10.11884/HPLPB201729.160454
    [21]
    朱剑钰, 徐雪峰, 蒋翊民, 等. 主动中子多重性法估算铀材料质量的不确定性[J]. 原子核物理评论, 2015, 32(3): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-HWDT201503012.htm

    Zhu Jianyu, Xu Xuefeng, Jiang Yimin, et al. Uncertainty of uranium mass measurement by active neutron multiplicity. Nuclear Physics Review, 2015, 32(3): 323-329 https://www.cnki.com.cn/Article/CJFDTOTAL-HWDT201503012.htm
    [22]
    Santi P, Miller M. Reevaluation of prompt neutron emission multiplicity distributions for spontaneous fission[J]. Nuclear Science and Engineering, 2008, 160(2): 190-199.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article views (1158) PDF downloads(203) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return