Citation: | Li Jianxiong, Zhuang Yongjia, Li Xianguo. Unconditionally stable auxiliary differential equation Crank-Nicolson-approximate-decoupling FDTD algorithm for 2-D anisotropic magnetized plasma[J]. High Power Laser and Particle Beams, 2018, 30: 012001. doi: 10.11884/HPLPB201830.170269 |
[1] |
Luebbers R J, Hunsberger F, Kunz K S. A frequency dependent time domain formulation for transient propagation in plasma[J]. IEEE Trans Antennas and Propagation, 1991, 39(1): 29-34. doi: 10.1109/8.64431
|
[2] |
刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD方法[J]. 物理学报, 2004, 53(7): 2233-2236. doi: 10.3321/j.issn:1000-3290.2004.07.040
Liu Shaobin, Mo Jinjun, Yuan Naichang. An auxiliary differential equation FDTD method for anisotropic magnetized plasma. Acta Physica Sinica, 2004, 53(7): 2233-2236 doi: 10.3321/j.issn:1000-3290.2004.07.040
|
[3] |
Xu L J, Yuan N C. JEC-FDTD for 2-D conducting cylinder coated by anisotropic magnetized plasma[J]. IEEE Microwave and Wireless Components Letters, 2005, 15(12): 892-894. doi: 10.1109/LMWC.2005.859970
|
[4] |
Liu S, Zhong S, Liu S B. Piecewise linear recursive convolution FDTD method for magnetized plasmas[J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 290-295. doi: 10.1016/S1004-4132(06)60050-9
|
[5] |
杨宏伟, 袁洪, 陈如山, 等. 各向异性磁化等离子体的SO-FDTD方法[J]. 物理学报, 2007, 56(3): 1443-1446. doi: 10.3321/j.issn:1000-3290.2007.03.034
Yang Hongwei, Yuan Hong, Chen Rushan, et al. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446 doi: 10.3321/j.issn:1000-3290.2007.03.034
|
[6] |
Taflove A, Hagness S C. Computational electrodynamics: The finite-difference time-domain method[M]. 3rd ed. Boston: Artech House, 2005.
|
[7] |
Namiki T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Trans Microwave Theory and Techniques, 1999, 47(10): 2003-2007. doi: 10.1109/22.795075
|
[8] |
Sun G, Trueman C W. Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations[J]. Electronics Letters, 2003, 39(7): 595-597. doi: 10.1049/el:20030416
|
[9] |
Lee J, Fornberg B. A split step approach for the 3-D Maxwell's equations[J]. Journal of Computational and Applied Mathematics, 2003, 158(2): 485-505. doi: 10.1016/S0377-0427(03)00484-9
|
[10] |
Shibayama J, Muraki M. Efficient implicit FDTD algorithm based on locally one-dimensional scheme[J]. Electronics Letters, 2005, 41(19): 1046-1047. doi: 10.1049/el:20052381
|
[11] |
Sun G, Trueman C W. Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TEz waves[J]. IEEE Trans Antennas and Propagation, 2004, 52(11): 2963-2972. doi: 10.1109/TAP.2004.835142
|