Volume 30 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Li Jianxiong, Zhuang Yongjia, Li Xianguo. Unconditionally stable auxiliary differential equation Crank-Nicolson-approximate-decoupling FDTD algorithm for 2-D anisotropic magnetized plasma[J]. High Power Laser and Particle Beams, 2018, 30: 012001. doi: 10.11884/HPLPB201830.170269
Citation: Li Jianxiong, Zhuang Yongjia, Li Xianguo. Unconditionally stable auxiliary differential equation Crank-Nicolson-approximate-decoupling FDTD algorithm for 2-D anisotropic magnetized plasma[J]. High Power Laser and Particle Beams, 2018, 30: 012001. doi: 10.11884/HPLPB201830.170269

Unconditionally stable auxiliary differential equation Crank-Nicolson-approximate-decoupling FDTD algorithm for 2-D anisotropic magnetized plasma

doi: 10.11884/HPLPB201830.170269
  • Received Date: 2017-06-29
  • Rev Recd Date: 2017-09-22
  • Publish Date: 2018-01-15
  • An effective unconditionally stable implementation of the auxiliary differential equation Crank-Nicolson-approximate-decoupling finite-difference time-domain (ADE-CNAD-FDTD) algorithm for 2-D anisotropic magnetized plasma is proposed. The conventional ADE-FDTD method for 1-D anisotropic dispersive media has high efficiency and accuracy. This paper extends this method to 2-D anisotropic magnetized plasma with the CNAD scheme. The proposed formulations not only solves the problem that incorporates both anisotropy and frequency dispersion at the same time, but also eliminates the Courant-Friedrich-Levy (CFL) stability constraint. A numerical example has been carried out to validate the proposed formulations in the 2-D FDTD domain composed of anisotropic magnetized plasma. The results prove that the proposed formulations significantly save time and perform stably with acceptable accuracy.
  • loading
  • [1]
    Luebbers R J, Hunsberger F, Kunz K S. A frequency dependent time domain formulation for transient propagation in plasma[J]. IEEE Trans Antennas and Propagation, 1991, 39(1): 29-34. doi: 10.1109/8.64431
    [2]
    刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD方法[J]. 物理学报, 2004, 53(7): 2233-2236. doi: 10.3321/j.issn:1000-3290.2004.07.040

    Liu Shaobin, Mo Jinjun, Yuan Naichang. An auxiliary differential equation FDTD method for anisotropic magnetized plasma. Acta Physica Sinica, 2004, 53(7): 2233-2236 doi: 10.3321/j.issn:1000-3290.2004.07.040
    [3]
    Xu L J, Yuan N C. JEC-FDTD for 2-D conducting cylinder coated by anisotropic magnetized plasma[J]. IEEE Microwave and Wireless Components Letters, 2005, 15(12): 892-894. doi: 10.1109/LMWC.2005.859970
    [4]
    Liu S, Zhong S, Liu S B. Piecewise linear recursive convolution FDTD method for magnetized plasmas[J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 290-295. doi: 10.1016/S1004-4132(06)60050-9
    [5]
    杨宏伟, 袁洪, 陈如山, 等. 各向异性磁化等离子体的SO-FDTD方法[J]. 物理学报, 2007, 56(3): 1443-1446. doi: 10.3321/j.issn:1000-3290.2007.03.034

    Yang Hongwei, Yuan Hong, Chen Rushan, et al. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446 doi: 10.3321/j.issn:1000-3290.2007.03.034
    [6]
    Taflove A, Hagness S C. Computational electrodynamics: The finite-difference time-domain method[M]. 3rd ed. Boston: Artech House, 2005.
    [7]
    Namiki T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Trans Microwave Theory and Techniques, 1999, 47(10): 2003-2007. doi: 10.1109/22.795075
    [8]
    Sun G, Trueman C W. Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations[J]. Electronics Letters, 2003, 39(7): 595-597. doi: 10.1049/el:20030416
    [9]
    Lee J, Fornberg B. A split step approach for the 3-D Maxwell's equations[J]. Journal of Computational and Applied Mathematics, 2003, 158(2): 485-505. doi: 10.1016/S0377-0427(03)00484-9
    [10]
    Shibayama J, Muraki M. Efficient implicit FDTD algorithm based on locally one-dimensional scheme[J]. Electronics Letters, 2005, 41(19): 1046-1047. doi: 10.1049/el:20052381
    [11]
    Sun G, Trueman C W. Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TEz waves[J]. IEEE Trans Antennas and Propagation, 2004, 52(11): 2963-2972. doi: 10.1109/TAP.2004.835142
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views (1138) PDF downloads(261) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return