Volume 30 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
Jiang Xuedong, Chen Jiran, Wang Yu, et al. Impact of vapor pressure on ablation rate of laser-irradiated ablate target[J]. High Power Laser and Particle Beams, 2018, 30: 021002. doi: 10.11884/HPLPB201830.170271
Citation: Jiang Xuedong, Chen Jiran, Wang Yu, et al. Impact of vapor pressure on ablation rate of laser-irradiated ablate target[J]. High Power Laser and Particle Beams, 2018, 30: 021002. doi: 10.11884/HPLPB201830.170271

Impact of vapor pressure on ablation rate of laser-irradiated ablate target

doi: 10.11884/HPLPB201830.170271
  • Received Date: 2017-06-30
  • Rev Recd Date: 2017-09-26
  • Publish Date: 2018-02-15
  • The ablation phenomena induced by high energy laser irradiation of carbon/carbon composites and the effect of vapor pressure on the ablation rate are investigated.First, the heat conduction model of the target irradiated by high power laser is set up based on Fourier law. The discontinuous region of Knudsen layer is described and the state parameters of the particles on both sides of discontinuities are analyzed by the Mott-smith approximation method. Then, combined with the mass continuity equation and the relation equation between vapor pressure and temperature equations, and the gas state equation to describe the vapor flow state, the numerical simulation about the relationship of the laser ablation rate of C/C composite material under the condition of vapor pressure with the power change is carried out. The results show that vapor pressure change will lead to the change of target vapor temperature in the process of high energy laser ablation of target, which will affect the ablation rate and make the rate change with power nonlinearly. It is very different from the linear variation when ignoring the vapor pressure. And this theoretically explains the difference between experimental data and theoretical results caused by ignoring the vapor pressure.
  • loading
  • [1]
    Guizard S, Semerok A, Gaudin J, et al. Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles[J]. Appl Surf Sci, 2002, 186: 364-368. doi: 10.1016/S0169-4332(01)00681-X
    [2]
    陈国夫. 飞秒激光与透明介质的相互作用[J]. 物理, 2005, 34(10): 725-730. doi: 10.3321/j.issn:0379-4148.2005.10.005

    Chen Guofu. Interaction of femto-second laser pulses with transparent materials. Physics, 2005, 34(10): 725-730 doi: 10.3321/j.issn:0379-4148.2005.10.005
    [3]
    Sahin R, Simsek E, Akturk S. Nanoscale patterning of graphene through femtosecond laser ablation[J]. Appl Phys Lett, 2014, 104: 053118.
    [4]
    冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究[J]. 物理学报, 2015, 64: 214201. doi: 10.7498/aps.64.214201

    Feng Peipei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite. Acta Physica Sinica, 2015, 64: 214201 doi: 10.7498/aps.64.214201
    [5]
    郭亚林, 梁国正, 丘哲明, 等. 激光参数对碳纤维复合材料质量烧蚀率的影响[J]. 复合材料学报, 2006, 23(5): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200605015.htm

    Guo Yalin, Liang Guozheng, Qiu Zheming, et al. Effect of laser parameters on mass ablative rate of carbon fiber reinforced composite. Acta Mater Compos, 2006, 23(5): 84-88 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200605015.htm
    [6]
    姚黎为, 王新兵, 刘璐宁, 等. 脉冲CO2激光烧蚀锡靶等离子体的数值模拟[J]. 强激光与粒子束, 2016, 28: 112007. doi: 10.11884/HPLPB201628.160170

    Yao Liwei, Wang Xinbing, Liu Luning, et al. Numerical simulation of pulsed CO2 laser produced tin plasma. High Power Laser and Particle Beams, 2016, 28: 112007 doi: 10.11884/HPLPB201628.160170
    [7]
    傅广生, 丁学成, 郭瑞强, 等. 脉冲激光沉积纳米硅晶粒流体模型的推广[J]. 物理学报, 2011, 60: 018102. doi: 10.7498/aps.60.018102

    Fu Guangsheng, Ding Xuecheng, Guo Ruiqiang, et al. The extended inertia fluid model to interpret the size distribution of Si nanoparticles prepared by pulsed laser ablation. Acta Physica Sinica, 2011, 60: 018102 doi: 10.7498/aps.60.018102
    [8]
    丁学成, 傅广生, 褚立志, 等. 环境气体种类对激光烧蚀粒子速度劈裂的影响[J]. 物理学报, 2012, 61: 155207. doi: 10.7498/aps.61.155207

    Ding Xuecheng, Fu Guangsheng, Chu Lizhi, et al. Influence of gas type on velocity splitting of ablated particles. Acta Physica Sinica, 2012, 61: 155207 doi: 10.7498/aps.61.155207
    [9]
    王文亭, 张楠, 王明伟, 等. 飞秒激光烧蚀金属靶的冲击温度[J]. 物理学报, 2013, 62: 170601. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201321011.htm

    Wang Wenting, Zhang Nan, Wang Mingwei, et al. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62: 170601 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201321011.htm
    [10]
    梁亦寒, 胡广月, 袁鹏, 等. 纳秒激光烧蚀固体靶材产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化[J]. 物理学报, 2015, 64: 125204. doi: 10.7498/aps.64.125204

    Liang Yihan, Hu Guangyue, Yuan Peng, et al. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64: 125204 doi: 10.7498/aps.64.125204
    [11]
    陆建, 倪晓武, 贺安之. 激光与材料相互作用物理学[M]. 北京: 机械工业出版社, 1996.

    Lu Jian, Ni Xiaowu, He Anzhi. Physics of interaction between laser and materials. Beijing: China Machine Press, 1996
    [12]
    黄海明, 孙岳. 脉冲强激光辐照下材料响应的非傅里叶效应[J]. 强激光与粒子束, 2009, 21(6): 808-812. http://www.hplpb.com.cn/article/id/4044

    Huang Haiming, Sun Yue. Non-Fourier response of target irradiated by multi-pulse high power laser. High Power Laser and Particle Beams, 2009, 21(6): 808-812 http://www.hplpb.com.cn/article/id/4044
    [13]
    胡汉平. 热传导理论[M]. 1版. 合肥: 中国科学技术大学出版社, 2010.

    Hu Hanping. Thermal conduction theory. 1st ed. Hefei: University of Science and Technology of China Press, 2010
    [14]
    赵卫, 乔玲, 韩晓林, 等. C/C-SiC复合材料的表面烧蚀模型及数值模拟[J]. 东南大学学报(自然科学版), 2011, 41(2): 365-369.

    Zhao Wei, Qiao Ling, Han Xiaolin, et al. Surface ablation model and numerical simulation of C/C-SiC composites. J Southeast Univ (Nat Sci Ed), 2011, 41(2): 365-369
    [15]
    Chan C L, Mazumder J. One-dimensional steady-state mode for damage by vaporization and liquid expulsion due to laser-material interaction[J]. J App Phys, 1987, 62(11): 4579-4586.
    [16]
    Leonid V Z, Barbara J G. Velocity distributions of molecules ejected in laser ablation[J]. App Phys Lett, 1997, 71(4): 551-553.
    [17]
    袁钢, 周光泉. 用于等离子体及LSD波点燃阈值的判据[J]. 高压物理学报, 1988, 2(2): 182-191. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL198802014.htm

    Yuan Gang, Zhou Guangquan. Criteria of thresholds for plasma and LSD wave ignition. Chin J High Pressure Phys, 1988, 2(2): 182-191 https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL198802014.htm
    [18]
    杨波, 朱金荣, 杨雁南, 等. 由激光靶冲量耦合实验结果判定激光支持爆轰波点燃阈值[J]. 中国激光, 2007, 34(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200701027.htm

    Yang Bo, Zhu Jinrong, Yang Yannan, et al. Determination of the laser supported detonation wave ignition threshold from impulse coupling between laser and target. Chin J Lasers, 2007, 34(1): 139-144 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200701027.htm
    [19]
    Batanov V A, Bunkin F V, Prokhorov A M, et al. Evaporation of metallic targets caused by intense optical radiation[J]. Sov Phys JETP, 1973, 36(2): 311-322.
    [20]
    Kelly R. Gas dynamics of the pulsed emission of a perfect gas with applications to laser sputtering and to nozzle expansion[J]. Phys Rev A, 1992, 46(2): 860-874.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (1220) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return