Peng Yi, Zhang Jingyu, Chen Yixue. Application of improved transmutation trajectory analysis in neutron activation calculation[J]. High Power Laser and Particle Beams, 2017, 29: 036018. doi: 10.11884/HPLPB201729.160194
Citation: Xu Chunyan, Zhan Guowei, Qing Chun, et al. Estimation and measurement of optical turbulence over land and offshore[J]. High Power Laser and Particle Beams, 2018, 30: 021003. doi: 10.11884/HPLPB201830.170296

Estimation and measurement of optical turbulence over land and offshore

doi: 10.11884/HPLPB201830.170296
  • Received Date: 2017-07-17
  • Rev Recd Date: 2017-09-11
  • Publish Date: 2018-02-15
  • The refractive index structure constant is estimated and compared with measured values from micro-thermometer by using the meteorological parameters of Chengdu and Maoming, such as temperature, humidity and wind speed on two altitudes. The estimated model adopts MARIAH algorithm, which is based on the Monin-Obukhov similarity theory. The result shows that it is feasible to calculate the structure parameter by MARIAH algorithm. The trend and order of magnitude of the estimated structure constant fit well to that of the measured data. The correlation coefficients between estimated and measured values of two places are 0.86 and 0.92 while the mean absolute error values are 0.410 and 0.414 respectively. Besides, the estimated structure constant of Maoming is one order of magnitude larger than that of Chengdu.
  • [1]
    吴晓庆, 朱行听, 黄宏华, 等. 基于Monin-Obukhov相似理论估算近地面光学湍流强度[J]. 光学学报, 2012, 32 (7): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201207003.htm

    Wu Xiaoqing, Zhu Xingting, Huang Honghua, et al. Optical turbulence of atmospheric surface layer estimated based on the Monin-Obukhov similarity theory. Acta Optica Sinica, 2012, 32 (7): 22-28 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201207003.htm
    [2]
    李杨, 相里斌, 张文喜. 湍流大气中激光传输对傅里叶望远镜成像质量的影响[J]. 强激光与粒子束, 2013, 25 (2): 292-296. doi: 10.3788/HPLPB20132502.0292

    Li Yang, Xiang Libin, Zhang Wenxi. Effects of laser propagation through atmospheric turbulence on imaging quality in Fourier telescopy. High Power Laser and Particle Beams, 2013, 25 (2): 292-296 doi: 10.3788/HPLPB20132502.0292
    [3]
    Kunkel K E, Walters D L. Modeling the diurnal dependence of the optical refractive index structure parameter[J]. Journal of Geophysical Research: Oceans, 1983, 88 (C15): 10999-11004. doi: 10.1029/JC088iC15p10999
    [4]
    Sadot D, Kopeika N S. Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: Models and validation[J]. Optical Engineering, 1992, 31 (2): 200-212. doi: 10.1117/12.56059
    [5]
    青春, 吴晓庆, 李学彬, 等. 基于天气数值预报模式预报高空光学湍流[J]. 强激光与粒子束, 2015, 27: 061009. doi: 10.11884/HPLPB201527.061009

    Qing Chun, Wu Xiaoqing, Li Xuebin. Forecast upper air optical turbulence based on weather research and forecasting model. High Power Laser and Particle Beams, 2015, 27: 061009 doi: 10.11884/HPLPB201527.061009
    [6]
    Thiermann V, Lohse H, Englisch G. Modeling optical turbulence in the atmospheric boundary layer over sea[C]//Proc of SPIE. 1997, 2596: 198-203.
    [7]
    Hutt D L. Modeling and measurements of atmospheric optical turbulence over land[J]. Optical Engineering, 1999, 38 (8): 1288-1295. doi: 10.1117/1.602188
    [8]
    戴福山, 李有宽. 利用气象要素估算海洋大气近地层光学湍流[J]. 光学学报, 2007, 27 (2): 191-196. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200702001.htm

    Dai Fushan, Li Youkuan. Estimation of the optical turbulence in the marine atmospheric surface layer based on meteorological data. Acta Optica Sinica, 2007, 27 (2): 191-196 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200702001.htm
    [9]
    Rachele H, Tunick A, Hansen F V. MARIAH—A similarity-based method for determining wind, temperature, and humidity profile structure in the atmospheric surface layer[J]. Journal of Applied Meteorology, 1995, 34 (4): 1000-1005. doi: 10.1175/1520-0450(1995)034<1000:MASBMF>2.0.CO;2
    [10]
    Qing Chun, Wu Xiaoqing, Huang Honghua, et al. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model[J]. Optics Express, 2016, 24 (18): 20424. doi: 10.1364/OE.24.020424
  • Relative Articles

    [1]Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254
    [2]Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006
    [3]Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101
    [4]Shi Lei, Zhu Yufeng, Lu Yanlei, Xia Wenfeng, Qiao Hanqing, Yi Chaolong, Fan Yajun. Pulse compression based on pulse forming line charging techonlogy[J]. High Power Laser and Particle Beams, 2015, 27(06): 065003. doi: 10.11884/HPLPB201527.065003
    [5]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Tang Chuanxiang. Design of compact power combiner in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063013. doi: 10.11884/HPLPB201426.063013
    [6]Bai Zhen, Li Guolin, Zhang Jun. X-band high power microwave mode-selective directional coupler[J]. High Power Laser and Particle Beams, 2013, 25(07): 1747-1750. doi: 10.3788/HPLPB20132507.1747
    [7]Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448
    [8]liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]zhong shaopeng, zhao minghua, wang baoliang. Design and test of sub-harmonic cavity's coupler for 150 MeV linac of Shanghai synchrotron radiation facility[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [10]guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [11]gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [12]shi de-wan, wang wen-xiang, gong yu-bin, wei yan-yu. Solution of field distribution in stripline directional coupler[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [13]zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [14]liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [15]xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [16]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [17]wang chao, lzhi-wei, he wei-ming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [18]ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.6 %FULLTEXT: 25.6 %META: 70.7 %META: 70.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %其他: 0.5 %其他: 0.5 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.5 %Pakistan: 0.5 %Switzerland: 0.1 %Switzerland: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 2.0 %[]: 2.0 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %内江: 0.1 %内江: 0.1 %北京: 14.1 %北京: 14.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南平: 0.1 %南平: 0.1 %南通: 0.2 %南通: 0.2 %卢布林: 0.3 %卢布林: 0.3 %台北: 0.1 %台北: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.3 %咸阳: 0.3 %哈尔科夫: 0.4 %哈尔科夫: 0.4 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %大田广域: 0.1 %大田广域: 0.1 %天津: 0.3 %天津: 0.3 %孟买: 0.5 %孟买: 0.5 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %山景: 0.1 %山景: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.3 %常州: 0.3 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %德里: 0.2 %德里: 0.2 %德黑兰: 0.6 %德黑兰: 0.6 %忠清北道: 0.1 %忠清北道: 0.1 %成都: 0.1 %成都: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.2 %新德里: 0.2 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.2 %杭州: 1.2 %武汉: 0.1 %武汉: 0.1 %毕晓普: 0.1 %毕晓普: 0.1 %汉诺威: 0.1 %汉诺威: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %漯河: 0.9 %漯河: 0.9 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.3 %纽约: 0.3 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 14.4 %芒廷维尤: 14.4 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.3 %衢州: 0.3 %西孟加拉邦: 0.2 %西孟加拉邦: 0.2 %西宁: 45.2 %西宁: 45.2 %西安: 0.4 %西安: 0.4 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %黄山: 0.1 %黄山: 0.1 %其他其他ChinaIndiaKorea Republic ofPakistanSwitzerlandTaiwan, ChinaUnited States[]上海中山临汾丹东丽水内江北京十堰南京南平南通卢布林台北台州合肥咸阳哈尔科夫哥伦布嘉兴大田广域天津孟买安康宣城山景巴中常州广州张家口德里德黑兰忠清北道成都新乡新德里无锡昆明晋城普洱杭州武汉毕晓普汉诺威深圳温州湖州漯河珠海石家庄福州秦皇岛纽约聊城芒廷维尤芝加哥衢州西孟加拉邦西宁西安贵阳运城郑州重庆长沙长治阳泉黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (1224) PDF downloads(221) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return