Volume 30 Issue 5
May  2018
Turn off MathJax
Article Contents
Sun Zhonghao, Dong Chao, Zhang Yachun, et al. Absorption of 10 GHz electromagnetic waves by femtosecond filaments array[J]. High Power Laser and Particle Beams, 2018, 30: 053201. doi: 10.11884/HPLPB201830.170301
Citation: Sun Zhonghao, Dong Chao, Zhang Yachun, et al. Absorption of 10 GHz electromagnetic waves by femtosecond filaments array[J]. High Power Laser and Particle Beams, 2018, 30: 053201. doi: 10.11884/HPLPB201830.170301

Absorption of 10 GHz electromagnetic waves by femtosecond filaments array

doi: 10.11884/HPLPB201830.170301
  • Received Date: 2017-07-29
  • Rev Recd Date: 2017-12-01
  • Publish Date: 2018-05-15
  • In order to study the absorption characteristics of 10 GHz electromagnetic (EM) waves by femtosecond filaments array, the interaction model of electromagnetic wave and femtosecond filaments array is established, and the absorption coefficients with electron temperature, electron density, filament diameter, and EM polarization are calculated by the finite element method (FEM). The results indicate that the plasma filaments array becomes transparent for EM wave when the polarization of the EM waves is perpendicular to the filaments axis. The absorption coefficient increases first and then decreases with the increasing of the filaments electron density or electron temperature, when skin depth of EM wave is equal to the diameter of the filament, the absorption coefficient reaches the maximum. For the S-polarized EM wave, the absorption coefficient increases with incident angle when the diameter of the filament is 50 μm. There is an absorption peak at large angle when the filament diameter is between 100 μm to 200 μm, and the incident angle responding to the peak absorption is decreasing with the diameter of the filaments. For the P-polarized EM wave, the absorption coefficient is decreasing with the incidence angle of the EM wave.
  • loading
  • [1]
    Rodriguez M, Bourayou R, Méjean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 2004, 69: 036607. doi: 10.1103/PhysRevE.69.036607
    [2]
    Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses[J]. Applied Physics B, 1999, 68(4): 753-756. doi: 10.1007/s003400050699
    [3]
    王海涛, 范承玉, 沈红, 等. 飞秒光丝中等离子体密度时间演化特征[J]. 强激光与粒子束, 2012, 24(5): 1024-1028. doi: 10.3788/HPLPB20122405.1024

    Wang Haitao, Fan Chengyu, Shen Hong, et al. Temporal evolution of plasma density in femtosecond light filaments. High Power Laser and Particle Beams, 2012, 24(5): 1024-1028 doi: 10.3788/HPLPB20122405.1024
    [4]
    Courvoisier F, Boutou V, Kasparian J, et al. Ultraintense light filaments transmitted through clouds[J]. Applied Physics Letters, 2003, 83(2): 213-215. doi: 10.1063/1.1592615
    [5]
    Méchain G, Méjean G, Ackermann R, et al. Propagation of fs TW laser filaments in adverse atmospheric conditions[J]. Applied Physics B, 2005, 80(7): 785-789. doi: 10.1007/s00340-005-1825-2
    [6]
    Silaeva E P, Kandidov V P. Propagation of a high-power femtosecond pulse filament through a layer of aerosol[J]. Atmospheric and Oceanic Optics, 2009, 22(1): 26-34. doi: 10.1134/S1024856009010059
    [7]
    高慧. 超快激光光丝阵列产生机理研究[D]. 天津: 南开大学, 2013.

    Gao Hui. Ultrafast laser filament array generation. Tianjin: Nankai University, 2013
    [8]
    Musin R R, Shneider M N, Zheltikov A M, et al. Guiding radar signals by arrays of laser-induced filaments: Finite-difference analysis[J]. Applied Optics, 2007, 46(23): 5593-5597. doi: 10.1364/AO.46.005593
    [9]
    Chateauneuf M, Payeur S, Dubois J, et al. Microwave guiding in air by a cylindrical filament array waveguide[J]. Applied Physics Letters, 2008, 92: 091104. doi: 10.1063/1.2889501
    [10]
    Shneider M N, Zheltikov A M, Miles R B. Long-lived laser-induced microwave plasma guides in the atmosphere: self-consistent plasma-dynamic analysis and numerical simulations[J]. Journal of Applied Physics, 2010, 108: 033113. doi: 10.1063/1.3457150
    [11]
    Marian A, Morsli M E, Vidal F, et al. The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air[J]. Physics of Plasmas, 2013, 20: 023301. doi: 10.1063/1.4792160
    [12]
    Alshershby M, Hao Z, Camino A, et al. Modeling a femtosecond filament array waveguide for guiding pulsed infrared laser radiation[J]. Optics Communications, 2013, 296: 87-94. doi: 10.1016/j.optcom.2012.12.067
    [13]
    Camino A, Xi T, Hao Z, et al. Femtosecond filament array generated in air[J]. Applied Physics B, 2015, 121(3): 363-368. doi: 10.1007/s00340-015-6238-2
    [14]
    Bogatskaya A V, Popov A M, Smetanin I V. Amplification and guiding of microwave radiation in a plasma channel created by an ultrashort high-intensity laser pulse in noble gases[J]. Journal of Russian Laser Research, 2014, 35(5): 437-446. doi: 10.1007/s10946-014-9445-0
    [15]
    Bogatskaya A V, Hou B, Popov A M, et al. Nonequilibrium laser plasma of noble gases: Prospects for amplification and guiding of the microwave radiation[J]. Physics of Plasmas, 2016, 23: 374001.
    [16]
    Kartashov D, Shneider M N. Femtosecond filament initiated, microwave heated cavity-free nitrogen laser in air[J]. Journal of Applied Physics, 2017, 121: 113303. doi: 10.1063/1.4978745
    [17]
    Prade B, Houard A, Larour J, et al. Transfer of microwave energy along a filament plasma column in air[J]. Applied Physics B, 2017, 123(1): 40. doi: 10.1007/s00340-016-6616-4
    [18]
    吴莹. 激光等离子体的微波干扰和诊断研究[D]. 南京: 南京理工大学, 2009.

    Wu Ying. Studies on microwave interference and microwave measure of laser-induced plasma. Nanjing: Nanjing University of Science and Technology, 2009
    [19]
    弗朗西斯·F·陈. 等离子体物理学导论[M]. 北京: 科学出版社, 2016.

    Chen F F. Introduction to plasma physics. Beijing: Science Press, 2016
    [20]
    Huba J D. NRL (Naval Research Laboratory) plasma formulary, revised[R]. NRL/PU/6790-16-614, 2016.
    [21]
    张亚春, 何湘, 沈中华, 等. 进气道内衬筒形等离子体隐身性能三维模拟[J]. 强激光与粒子束, 2015, 27: 052005. doi: 10.11884/HPLPB201527.052005

    Zhang Yachun, He Xiang, Shen Zhonghua, et al. Three-dimensional simulation of plasma stealth for cylindrical inlet. High Power Laser and Particle Beams, 2015, 27: 052005 doi: 10.11884/HPLPB201527.052005
    [22]
    庄钊文, 袁乃昌, 刘少斌, 等. 等离子体隐身技术[M]. 北京: 科学出版社, 2005.

    Zhuang Zhaowen, Yuan Naichang, Liu Shaobin, et al. Plasma Stealth Technology. Beijing: Science Press, 2005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (1215) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return