Volume 30 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
Yan Junkai, Zhang Haoliang, Yang Meng, et al. Research on microwave testing environments of an airship lifting platform[J]. High Power Laser and Particle Beams, 2018, 30: 073007. doi: 10.11884/HPLPB201830.170302
Citation: Yan Junkai, Zhang Haoliang, Yang Meng, et al. Research on microwave testing environments of an airship lifting platform[J]. High Power Laser and Particle Beams, 2018, 30: 073007. doi: 10.11884/HPLPB201830.170302

Research on microwave testing environments of an airship lifting platform

doi: 10.11884/HPLPB201830.170302
  • Received Date: 2017-12-29
  • Rev Recd Date: 2018-02-27
  • Publish Date: 2018-07-15
  • This article presents a measurement on the testing environment of an airship lifting platform in real test range scene and moderate weather condition. The results show that the heading azimuth of the airship is more stable under fixed orientation flying mode than under fixed flight path mode, while the elevation and rolling angular stabilities under the two flying modes are almost undistinguishable. Statistical analysis proves that the equipped antenna stabilizing platform can isolate the carrier's angular shake as high as ±10° and continuously control the antenna beam axis to aim at the ground target with error within ±1°. The 20-40 km distance tests show that the airship carried receiving antenna with 4.5° beam width suffered a 1 dB gain loss and ±1 dB signal level fluctuation under head-on flying path, while the results degenerate to 2.3 dB gain loss and ±3 dB signal level fluctuation in lateral flying path. The article also presents some testing results about the airship lifting platform's EM scattering environment rooting from its metal structure as well as the test range's rough ground.
  • loading
  • [1]
    Xiao Renzhen, Tan Weibing, Li Xiaoze, et al. A high-efficiency overmoded klystron-like relativistic backward wave oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2012, 9: 123904.
    [2]
    邢笑月, 黄文华, 刘小龙, 等. 大口径天线短脉冲微波辐射特性[J]. 强激光与粒子束, 2016, 28: 093007. doi: 10.11884/HPLPB201628.151205

    Xing Xiaoyue, Huang Wenhua, Liu Xiaolong, et al. Microwave radiation characteristics of large-aperture antenna excited by short pulses. High Power Laser and Particle Beams, 2016, 28: 093007 doi: 10.11884/HPLPB201628.151205
    [3]
    张治强, 黄惠军, 巴涛, 等. 高功率微波天线增益测试方法研究[J]. 强激光与粒子束, 2014, 26: 063007. doi: 10.11884/HPLPB201426.063007

    Zhang Zhiqiang, Huang Huijun, Ba Tao, et al. Research on high power microwave antenna gain measurement method. High Power Laser and Particle Beams, 2014, 26: 063007 doi: 10.11884/HPLPB201426.063007
    [4]
    张黎军, 陈昌华, 滕雁, 等. 高功率微波辐射场远场测量方法[J]. 强激光与粒子束, 2016, 28: 053002. doi: 10.11884/HPLPB201628.053002

    Zhang Lijun, Chen Changhua, Teng Yan, et al. Farfield measurement method of high power microwave in radiation field. High Power Laser and Particle Beams, 2016, 28: 053002 doi: 10.11884/HPLPB201628.053002
    [5]
    蒋廷勇, 高林, 刘小龙, 等. 抑制地面反射影响的高功率微波辐射场测量方法[J]. 强激光与粒子束, 2015, 27: 123007. doi: 10.11884/HPLPB201527.123007

    Jiang Tingyong, Gao Lin, Liu Xiaolong, et al. Minimizing the impact of ground reflection on high power microwave E-field measurement. High Power Laser and Particle Beams, 2015, 27: 123007 doi: 10.11884/HPLPB201527.123007
    [6]
    Khoury G A, Gillett J D. Airship technology[M]. Beijing: Science Press, 2007.
    [7]
    陈国虎, 俞竹青, 吕学能. 无人机雷达天线稳定平台的优化设计研究[J]. 机电工程, 2015, 32(10): 1330-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201510012.htm

    Chen Guohu, Yu Zhuqing, Lü Xueneng. Optimal for radar antenna stabilized platform of an unmanned aerial vehicle. Journal of Mechanical & Electrical Engineering, 2015, 32(10): 1330-1339 https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201510012.htm
    [8]
    Hikert J M. Inertially stabilized platform technology concepts and principle[J]. IEEE Control Systems Magazine, 2008(12) : 26-46.
    [9]
    曹乐, 魏兵, 朱湘琴. 高功率微波照射下半空间上方天线罩耦合特性[J]. 强激光与粒子束, 2015, 27: 083006. doi: 10.11884/HPLPB201527.083006

    Cao Le, Wei Bing, Zhu Xiangqin. Electromagnetic energy coupling analysis of radome over lossy half space under high power microwave. High Power Laser and Particle Beams, 2015, 27: 083006 doi: 10.11884/HPLPB201527.083006
    [10]
    齐国雷, 周东方, 饶育萍, 等. FDTD方法分析高功率微波粗糙地面散射特性[J]. 强激光与粒子束, 2010, 22(9): 2092-2096. http://www.hplpb.com.cn/article/id/4759

    Qi Guolei, Zhou Dongfang, Rao Yuping. et al. Scattering properties analysis of high power microwave at rough ground with FDTD method. High Power Laser and Particle Beams, 2010, 22(9): 2092-2096 http://www.hplpb.com.cn/article/id/4759
    [11]
    葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2011.

    Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves. Xi'an: Xidian University Press, 2011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (1058) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return