Citation: | Gu Duan, Wang Zhen, Huang Dazhang, et al. Switchyard design for Shanghai soft X-ray free electron laser facility[J]. High Power Laser and Particle Beams, 2018, 30: 045101. doi: 10.11884/HPLPB201830.170303 |
[1] |
Madey J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 1971, 42: 1906. doi: 10.1063/1.1660466
|
[2] |
McNeil B W J, Thompson N R. X-ray free-electron lasers[J]. Nature Photonics, 2010, 4: 814-821. doi: 10.1038/nphoton.2010.239
|
[3] |
Ackermann W, Asova G, Ayvazyan V, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nature Photonics, 2007, 1(6): 336-342. doi: 10.1038/nphoton.2007.76
|
[4] |
Emma P, Akre R, Arthur J, et al. First lasing and operation of an angstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4: 641-647. doi: 10.1038/nphoton.2010.176
|
[5] |
Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6: 540-544. doi: 10.1038/nphoton.2012.141
|
[6] |
Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6: 699-704. doi: 10.1038/nphoton.2012.233
|
[7] |
Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7: 913-918.
|
[8] |
Kang H S, Kim K W, Ko I S. WEYC2: Status of the PAL-FEL construction[C]//Proceedings of IPAC2015.2015.
|
[9] |
Zhao Z T, Chen S Y, Yu L H, et al. THPC053: Shanghai soft X-ray free electron laser test facility[C]//Proceedings of IPAC2011.2011.
|
[10] |
Schietinger T, Pedrozzi M, Aiba M, et al. Commissioning experience and beam physics measurements at the Swiss FEL Injector Test Facility[J]. Phys Rev Accel Beams, 2016, 19: 100702. doi: 10.1103/PhysRevAccelBeams.19.100702
|
[11] |
Altarelli M, Brinkmann R, Chergui M, et al. The European X-ray free-electron laser, Technical design report[R]. DESY-06-097, 2006: 1-26.
|
[12] |
Galayda J N. TUIOA04: The new LCLC-Ⅱ Project: Status and challenges[C]//Proceedings of LINAC2014.2014.
|
[13] |
Milas N, Reiche S. MOPD37: Switchyard design: ATHOS[C]//Proceedings of FEL2012.2012.
|
[14] |
Jiao Yi, Cui Xiaohao, Huang Xiyang, et al. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat[J]. Phys Rev ST Accel Beams, 2014, 17: 060701. doi: 10.1103/PhysRevSTAB.17.060701
|
[15] |
Borland M. Elegant: A flexible SDDS-compliant code for accelerator simulation[R]. APS-LS-287, 2000.
|
[16] |
Bane K L F, Stupakov G. Transition radiation wakefields for a beam passing through a metallic foil[J]. Phys Rev ST Accel Beams, 2004, 7: 064401. doi: 10.1103/PhysRevSTAB.7.064401
|
[17] |
Saldin E L, Schneidmiller E A, Yurkov M V, et al. An analytical description of longitudinal phase space distortions in magnetic bunch compressors[J]. Nucl Instrum Methods Phys Res A, 2002, 483: 516-520. doi: 10.1016/S0168-9002(02)00372-8
|
[18] |
Huang Z, Borland M, Emma P, et al. Suppression of microbunching instability in the linac coherent light source[J]. Phys Rev ST Accel Beams, 2004, 7: 074401. doi: 10.1103/PhysRevSTAB.7.074401
|
[19] |
Emma P, Wu Juhao. MOPCH049: Trajectory stability modeling and tolerances in the LCLS[C]//Proceedings of EPAC2006.2006.
|