Volume 30 Issue 4
Apr.  2018
Turn off MathJax
Article Contents
Gu Duan, Wang Zhen, Huang Dazhang, et al. Switchyard design for Shanghai soft X-ray free electron laser facility[J]. High Power Laser and Particle Beams, 2018, 30: 045101. doi: 10.11884/HPLPB201830.170303
Citation: Gu Duan, Wang Zhen, Huang Dazhang, et al. Switchyard design for Shanghai soft X-ray free electron laser facility[J]. High Power Laser and Particle Beams, 2018, 30: 045101. doi: 10.11884/HPLPB201830.170303

Switchyard design for Shanghai soft X-ray free electron laser facility

doi: 10.11884/HPLPB201830.170303
Funds:

Natural Science Foundation of China 11675248

More Information
  • Author Bio:

    Gu Duan(1988—), male, PhD candidate, engaged in accelerator physics and diagnostics; guduan@sinap.ac.cn

  • Corresponding author: Zhang Meng(1982—), male; zhangmeng@sinap.ac.cn
  • Received Date: 2017-08-03
  • Rev Recd Date: 2017-12-06
  • Publish Date: 2018-04-15
  • In this article, a feasible switchyard design is proposed for the Shanghai soft X-ray Free Electron Laser (SXFEL) facility. In the proposed scheme, a switchyard is used to transport the electron beam to different undulator lines. Three-dimensional start-to-end simulations have been carried out to research the beam dynamic during transportation. The results show that the emittance of the electron beam increases less than 8%, meanwhile, the peak current, the energy spread and the bunch length are not spoiled as the beam passes through the switchyard. The microbunching instability of the beam and the jitter of the linear accelerator (linac) are analyzed as well.
  • loading
  • [1]
    Madey J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 1971, 42: 1906. doi: 10.1063/1.1660466
    [2]
    McNeil B W J, Thompson N R. X-ray free-electron lasers[J]. Nature Photonics, 2010, 4: 814-821. doi: 10.1038/nphoton.2010.239
    [3]
    Ackermann W, Asova G, Ayvazyan V, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nature Photonics, 2007, 1(6): 336-342. doi: 10.1038/nphoton.2007.76
    [4]
    Emma P, Akre R, Arthur J, et al. First lasing and operation of an angstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4: 641-647. doi: 10.1038/nphoton.2010.176
    [5]
    Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6: 540-544. doi: 10.1038/nphoton.2012.141
    [6]
    Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6: 699-704. doi: 10.1038/nphoton.2012.233
    [7]
    Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7: 913-918.
    [8]
    Kang H S, Kim K W, Ko I S. WEYC2: Status of the PAL-FEL construction[C]//Proceedings of IPAC2015.2015.
    [9]
    Zhao Z T, Chen S Y, Yu L H, et al. THPC053: Shanghai soft X-ray free electron laser test facility[C]//Proceedings of IPAC2011.2011.
    [10]
    Schietinger T, Pedrozzi M, Aiba M, et al. Commissioning experience and beam physics measurements at the Swiss FEL Injector Test Facility[J]. Phys Rev Accel Beams, 2016, 19: 100702. doi: 10.1103/PhysRevAccelBeams.19.100702
    [11]
    Altarelli M, Brinkmann R, Chergui M, et al. The European X-ray free-electron laser, Technical design report[R]. DESY-06-097, 2006: 1-26.
    [12]
    Galayda J N. TUIOA04: The new LCLC-Ⅱ Project: Status and challenges[C]//Proceedings of LINAC2014.2014.
    [13]
    Milas N, Reiche S. MOPD37: Switchyard design: ATHOS[C]//Proceedings of FEL2012.2012.
    [14]
    Jiao Yi, Cui Xiaohao, Huang Xiyang, et al. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat[J]. Phys Rev ST Accel Beams, 2014, 17: 060701. doi: 10.1103/PhysRevSTAB.17.060701
    [15]
    Borland M. Elegant: A flexible SDDS-compliant code for accelerator simulation[R]. APS-LS-287, 2000.
    [16]
    Bane K L F, Stupakov G. Transition radiation wakefields for a beam passing through a metallic foil[J]. Phys Rev ST Accel Beams, 2004, 7: 064401. doi: 10.1103/PhysRevSTAB.7.064401
    [17]
    Saldin E L, Schneidmiller E A, Yurkov M V, et al. An analytical description of longitudinal phase space distortions in magnetic bunch compressors[J]. Nucl Instrum Methods Phys Res A, 2002, 483: 516-520. doi: 10.1016/S0168-9002(02)00372-8
    [18]
    Huang Z, Borland M, Emma P, et al. Suppression of microbunching instability in the linac coherent light source[J]. Phys Rev ST Accel Beams, 2004, 7: 074401. doi: 10.1103/PhysRevSTAB.7.074401
    [19]
    Emma P, Wu Juhao. MOPCH049: Trajectory stability modeling and tolerances in the LCLS[C]//Proceedings of EPAC2006.2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1103) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return