Xu Chunyan, Zhan Guowei, Qing Chun, et al. Estimation and measurement of optical turbulence over land and offshore[J]. High Power Laser and Particle Beams, 2018, 30: 021003. doi: 10.11884/HPLPB201830.170296
Citation: Qi Zicheng, Ni Peijun, Jiang Wei, et al. CT method for accurately sizing flaws in metallic material[J]. High Power Laser and Particle Beams, 2018, 30: 025102. doi: 10.11884/HPLPB201830.170304

CT method for accurately sizing flaws in metallic material

doi: 10.11884/HPLPB201830.170304
  • Received Date: 2017-08-06
  • Rev Recd Date: 2017-10-09
  • Publish Date: 2018-02-15
  • The model of CT measurement for X-ray attenuation in metallic materials was established by using image Point Spread function(PSF) approximation, the numerical calculation on the gray scale amplitude perpendicular to the X-ray plane boundary was conducted by the measurement model, and the PSF curve was drawn. On this basis, the defects' quantitative evaluation model was presented according to the PSF curve for defects quantitative evaluation. The stainless steel sample containing artificial defects was analyzed by using the high-energy 6MeV industrial CT linear array detector system. The result shows that, compared with the traditional half-width defects measuring method, this method improves the accuracy of defects quantitative evaluation. This method provides a new and effective tool for high performance of quantitative evaluation on the defects in metallic materials.
  • [1]
    张朝宗, 郭志平, 张朋, 等. 工业CT技术和原理[M]. 北京: 科学出版社, 2009: 32-80.

    Zhang Chaozong, Guo Zhiping, Zhang Peng, et al. The technology and principle of industrial CT. Beijing: Science Press, 2009: 32-80
    [2]
    Jiang H. Computed tomography: Principle, design, artifacts and recent advances[M]. Beijing: Science Press, 2006: 1-71.
    [3]
    ISO/FDIS 15708-1, Non-destructive testing—Radiation methods—Computed tomography. Part 1: Principles[S].
    [4]
    徐留根, 彭春增, 全建龙, 等. 工业CT在航空机载传感器可靠性提升中的应用[J]. 传感器与微系统, 2016, 35(10): 158-160. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201610046.htm

    Xu Liugen, Peng Chunzeng, Quan Jianlong, et al. Applications of industrial CT in reliability improvement of airborne sensors. Transducer and Microsystem Technologies, 2016, 35(10): 158-160 https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201610046.htm
    [5]
    肖永顺. 工业CT在3D打印领域的新应用[C]//2014年全国射线数字成像与CT新技术研讨会论文集. 2014: 5.

    Xiao Yongshun. Application of 3D printing technology in the field of CT technology//Proceedings of National Symposium on Radiographic Digital Imaging and CT Technology in 2014. 2014: 5
    [6]
    高玉玲, 瑞睿, 宋丽君, 等. 工业CT技术在弹药装药密度差测量中的应用[J]. 无损检测, 2014, 36(4): 14-19, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201404004.htm

    Gao Yuling, Rui Rui, Song Lijun, et al. Application of the industrial CT technology in the ammunition charge density difference measurement. Nondestructive Testing, 2014, 36(4): 14-19, 25 https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201404004.htm
    [7]
    方黎勇, 李柏林, 李辉, 等. 工业CT在反求工程上的应用[J]. 强激光与粒子束, 2013, 25(7): 1620-1624. doi: 10.3788/HPLPB20132507.1620

    Fang Liyong, Li Bolin, Li Hui, et al. Application of industrial CT in reverse engineering technology. High Power Laser and Particle Beams, 2013, 25(7): 1620-1624 doi: 10.3788/HPLPB20132507.1620
    [8]
    Bartscher M, Neukamm M, Koch M, et al. Dimensional control of technical components with computed tomography[C]//Metrology and Industry Int, Conf. 2010: 17-19.
    [9]
    Bartscher M, Hilpert U, Fiedler D. Determination of the measurement uncertainty of computed tomography measurements using a cylinder head as an example[J]. Technisches Messen, 2008, 75(3): 178-186. doi: 10.1524/teme.2008.0822
    [10]
    Batenburg K J, Sijbers J. Adaptive thresholding of tomograms by projection distance minimization[J]. Pattern Recognition, 2009, 42(10): 2297-2305.
    [11]
    朱磊. 自适应阈值分割技术及在工业视觉检测中的应用[D]. 无锡: 江南大学, 2014: 19-29.

    Zhu Lei. Adaptive threshold segmentation and its application in industrial visual inspection. Wuxi: Jiangnan University, 2014: 19-29
    [12]
    陈培兴, 王明泉, 李世虎. 基于形态学和Otsu的固体火箭发动机CT缺陷三维分割[J]. 图学学报, 2015, 36(4): 581-586. doi: 10.3969/j.issn.2095-302X.2015.04.015

    Chen Peixing, Wang Mingquan, Li Shihu. 3D CT defects segmentation of solid rocket motor based on the morphology and Otsu. Journal of Graphics, 2015, 36(4): 581-586 doi: 10.3969/j.issn.2095-302X.2015.04.015
    [13]
    Bhowmik U K, Mandala D, Hudyma N W, et al. Segmentation of cracks in X-ray CT images of tested macroporous plaster specimens[C]//2014 Proceedings of IEEE Southeast Conference at Griffin Gate Marriot Resort & Spa. New York: IEEE Prees, 2014: 1-8.
    [14]
    吴永超. C-V方法在CT图像弱边缘检测中的应用研究[D]. 重庆: 重庆大学, 2013: 28-39.

    Wu Yongchao. Application research on weak edge detection of image based on C-V model method. Chongqing: Chongqing University, 2013: 28-39
    [15]
    徐维. 工业CT图像弱边缘检测方法研究[D]. 重庆: 重庆大学, 2012: 51-67.

    Xu Wei. Study on weak edge detection of industrial CT image. Chongqing: Chongqing University, 2012: 51-67
    [16]
    黄朕, 高富强, 郑忠义, 等. 模糊理论改进算法的CT图像弱边缘检测[J]. 强激光与粒子束, 2014, 26: 059001. doi: 10.11884/HPLPB201426.059001

    Huang Zhen, Gao Fuqiang, Zheng Zhongyi, et al. Weak edge detection of CT image based on improved algorithm of fuzzy theory. High Power Laser and Particle Beams, 2014, 26: 059001 doi: 10.11884/HPLPB201426.059001
    [17]
    吴平, 潘晋孝, 刘宾. CT图像边缘退化模型的建立及其在图像尺寸测量中的应用[J]. 光学精密工程, 2009, 17(9): 2269-2275. doi: 10.3321/j.issn:1004-924X.2009.09.030

    Wu Ping, Pan Jinxiao, Liu Bin. Computed tomography image edge degradation model and its application to image size measurement. Optics and Precision Engineering, 2009, 17(9): 2269-2275 doi: 10.3321/j.issn:1004-924X.2009.09.030
    [18]
    戚世乐, 王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306004.htm

    Qi Shile, Wang Meiqing. Adaptive active contour model for weak boundary extraction. Journal of Shandong University(Engineering Science), 2013, 43(6): 17-21 https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306004.htm
    [19]
    Licm, Xu C Y, Gui C F, et al. Level set evolution without re-initialization: a new variational formulation[C]// Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE CS, 2005: 430-436.
    [20]
    李钦弟, 蔡利栋. 一种基于非线性灰度变换的弱边缘检测方法[J]. 中国体视觉与图像分析, 2011, 16(3): 232-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201103004.htm

    Li Qindi, Cai Lidong. A weak edge detection method based on nonlinear transform of gray levels. Chinese Journal of Stereology and Image Analysis, 2011, 16(3): 232-236 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201103004.htm
    [21]
    张祥春, 张鹭, 王俊涛. 工业CT技术在航空发动机单晶叶片壁厚测量中的应用[J]. 无损检测, 2015, 37(2): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201502006.htm

    Zhang Xiangchun, Zhang Lu, Wang Juntao. The application of industrial CT technology in the aero-engine single crystal blades for wall thickness measurement. Nondestructive Testing, 2015, 37(2): 20-22 https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201502006.htm
    [22]
    GB/T 29067-2012, 损检测工业计算机层析成像(CT)图像测量方法[S].

    GB/T 29067-2012. Non-destructive testing—Test method for measuring industrial computed tomography(CT)image
    [23]
    齐子诚, 倪培君, 沈建云, 等. 基于中心距像素标定的工业CT尺寸测量方法[J]. 兵器材料科学与工程, 2017, 40(5): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201705031.htm

    Qi Zicheng, Ni Peijun, Shen Jianyun, et al. Industrial CT dimension measurement method based on center-to-pixel calibration. Ordnance Material Science and Engineering, 2017, 40(5): 122-126 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201705031.htm
    [24]
    Carton A K, Vandenbroucke D, Struye L, et al. Validation of MTF measurement for digital mammography quality control[J]. Med Phys, 2005, 32(6): 1684-1695.
    [25]
    Maidment A D A, Albert M. Conditioning data for calculation of the modulation transfer function[J]. Med Phys, 2003, 30(2): 248-253.
    [26]
    Greer P B, Doorn V T. Evaluation of an algorithm for the assessment of the MTF using an edge method[J]. Med Phys, 2000, 27(9): 2048-2059.
  • Relative Articles

    [1]Hu Xiaodan, Su Changdong, Luo Tao, Qing Chun, Sun Gang, Liu Qing, Li Xuebin, Zhu Wenyue, Wu Xiaoqing. Estimating the profiles of atmospheric turbulence above Korla, Maoming, Lhasa by Thorpe scale[J]. High Power Laser and Particle Beams, 2019, 31(8): 081002. doi: 10.11884/HPLPB201931.190074
    [2]Xi Xiaodong, Wu Hanping. Design of UV communication receiving optical system in the surface layer based on off-axial TMA structure[J]. High Power Laser and Particle Beams, 2017, 29(10): 101002. doi: 10.11884/HPLPB201729.170111
    [3]Lv Weiyu, Yuan Ke’e, Hu Shunxing, Wang Jianguo. Statistical characteristics on near-surface refractive index structure parameter in Gobi area[J]. High Power Laser and Particle Beams, 2015, 27(01): 011011. doi: 10.11884/HPLPB201527.011011
    [4]Wang Qian, Mei Haiping, Xiao Shumei, Huang Honghua, Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Fractal and intermittency analysis of atmospheric optical turbulence near ground[J]. High Power Laser and Particle Beams, 2014, 26(02): 021010. doi: 10.3788/HPLPB201426.021010
    [5]Sun Zheng, Ning Hui, Xie YongJie, Cao Xin. Refractivity profile distribution model for infrared waves[J]. High Power Laser and Particle Beams, 2012, 24(12): 2778-2782. doi: 10.3788/HPLPB20122412.2778
    [6]li yunbo, zhang yonggang, li guijuan, wang huili. Refraction effects on infrared system detection ranges in near sea surface[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [7]hu yuehong, qiang xiwen, feng jianwei, zhang zhigang, han yan, zong fei, li yan. Modeling of atmospheric turbulence in surface layer over desert based on meteorological parameters[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [8]wu ronghua, wang jiang’an, ren xichuang, kang sheng. Real-time inversion algorithm of multi-wavelength atmospheric transmissivity for aerial target infrared radiation[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [9]lu panpan, wu xiaoqing. Estimation and measurements of optical turbulence over snow[J]. High Power Laser and Particle Beams, 2009, 21(05): 0- .
    [10]qin yuzhen, wu xiaoqing, li duoyang, xu liming. Design and capability analysis of meteorologic radiosonde for turbulence[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [11]xu li-ming, wu xiao-qing, wang ying-jian. Methods comparision of estimating optical turbulence profile using conventional meteorology parameters[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [12]yao dong-sheng, zhu wen-yue, yuan ke-e, hao lei, rao rui-zhong, . Spatial distribution of atmospheric refractive index structure parameter about the dome[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [13]ma xiao-shan, zhu wen-yue, rao rui-zhong. Comparison of refractive index structure constants of atmospheric turbulence deduced from scintillation and beam wander effects[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [14]nie qun, wu xiao-qing. Estimating the refractive index structure parameter within atmospheric surface layer[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [15]zhu wen-yue, zhao zhu-ling, ma xiao-shan, rao rui-zhong. Optical method for simultaneously measuring refractive-index structure parameter and inner scale of atmospheric turbulence[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [16]mei hai ping, rao rui zhong, wu xiao qing, zhu wen yue. Evaluating refractive index structure constant and characterizing spectrum of atmospheric turbulence[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [17]wu xiao qing, wang ying jian, rao rui zhong, zeng zong yong, gong zhi ben. Experiment verification of numerical model of atmospheric optical refractive index structure parameter [J]. High Power Laser and Particle Beams, 2003, 15(02): 0- .
    [18]wu xiao qing, ma cheng sheng, wang ying jian, zeng zong yong, gong zhi ben. Longterm measurements and statistics study on refractiveindex structure parameter of surface layer[J]. High Power Laser and Particle Beams, 2002, 14(04): 0- .
    [19]wu xiao qing, wang ying jian, zeng zong yong, gong zhi ben. Numerical model of atmospheric optical refractive index structure parameter[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- .
  • Cited by

    Periodical cited type(3)

    1. 赵慧,张守宝,王红光,刘萱,林乐科,张银辉,蔡文炳. 基于WRF模式预报的微波湍流特性研究. 电波科学学报. 2022(02): 321-327 .
    2. 陆泽辉,郭振锋,孟森森,刘波,刘海锋,林炜,姚远,郭盟. 室外大气折射率结构常数实时测量研究. 遥测遥控. 2022(04): 31-36 .
    3. 樊文科,冯菊,周亮,廖成. 基于抛物方程的湍流散射研究. 电子测量技术. 2019(01): 6-10 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.3 %FULLTEXT: 22.3 %META: 74.5 %META: 74.5 %PDF: 3.2 %PDF: 3.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.9 %其他: 2.9 %其他: 0.4 %其他: 0.4 %China: 0.4 %China: 0.4 %Germany: 1.0 %Germany: 1.0 %India: 0.1 %India: 0.1 %Malvern: 0.2 %Malvern: 0.2 %Rochester: 0.1 %Rochester: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.4 %United States: 0.4 %[]: 0.3 %[]: 0.3 %上海: 0.8 %上海: 0.8 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.1 %佛山: 0.1 %北京: 12.1 %北京: 12.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %台州: 0.6 %台州: 0.6 %合肥: 0.5 %合肥: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.2 %天津: 0.2 %宣城: 0.2 %宣城: 0.2 %巴音郭楞: 0.4 %巴音郭楞: 0.4 %广州: 0.7 %广州: 0.7 %张家口: 1.0 %张家口: 1.0 %成都: 0.6 %成都: 0.6 %新乡: 0.1 %新乡: 0.1 %无锡: 0.2 %无锡: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %檀香山: 0.1 %檀香山: 0.1 %武汉: 1.3 %武汉: 1.3 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %温州: 0.5 %温州: 0.5 %湖州: 0.7 %湖州: 0.7 %漯河: 1.0 %漯河: 1.0 %盐城: 0.1 %盐城: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 15.5 %芒廷维尤: 15.5 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.1 %襄阳: 0.1 %西宁: 51.3 %西宁: 51.3 %西安: 0.2 %西安: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.2 %运城: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %长沙: 0.4 %长沙: 0.4 %长治: 0.1 %长治: 0.1 %韩国大邱: 0.1 %韩国大邱: 0.1 %黄山: 0.1 %黄山: 0.1 %其他其他ChinaGermanyIndiaMalvernRochesterTaiwan, ChinaUnited States[]上海中山临汾丹东伊利诺伊州佛山北京十堰南京台州合肥哥伦布天津宣城巴音郭楞广州张家口成都新乡无锡晋城普洱杭州檀香山武汉洛阳济南深圳温州湖州漯河盐城福州秦皇岛芒廷维尤芝加哥苏州衡阳衢州襄阳西宁西安贵阳运城邯郸郑州重庆金华长沙长治韩国大邱黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1901) PDF downloads(257) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return