Dai Huanyao, Zhou Bo, Mo Cuiqiong, et al. Electromagnetic interference mechanism and simulation in polarization for mono-pulse radar seeker[J]. High Power Laser and Particle Beams, 2015, 27: 103241. doi: 10.11884/HPLPB201527.103241
Citation: Qi Zicheng, Ni Peijun, Jiang Wei, et al. CT method for accurately sizing flaws in metallic material[J]. High Power Laser and Particle Beams, 2018, 30: 025102. doi: 10.11884/HPLPB201830.170304

CT method for accurately sizing flaws in metallic material

doi: 10.11884/HPLPB201830.170304
  • Received Date: 2017-08-06
  • Rev Recd Date: 2017-10-09
  • Publish Date: 2018-02-15
  • The model of CT measurement for X-ray attenuation in metallic materials was established by using image Point Spread function(PSF) approximation, the numerical calculation on the gray scale amplitude perpendicular to the X-ray plane boundary was conducted by the measurement model, and the PSF curve was drawn. On this basis, the defects' quantitative evaluation model was presented according to the PSF curve for defects quantitative evaluation. The stainless steel sample containing artificial defects was analyzed by using the high-energy 6MeV industrial CT linear array detector system. The result shows that, compared with the traditional half-width defects measuring method, this method improves the accuracy of defects quantitative evaluation. This method provides a new and effective tool for high performance of quantitative evaluation on the defects in metallic materials.
  • [1]
    张朝宗, 郭志平, 张朋, 等. 工业CT技术和原理[M]. 北京: 科学出版社, 2009: 32-80.

    Zhang Chaozong, Guo Zhiping, Zhang Peng, et al. The technology and principle of industrial CT. Beijing: Science Press, 2009: 32-80
    [2]
    Jiang H. Computed tomography: Principle, design, artifacts and recent advances[M]. Beijing: Science Press, 2006: 1-71.
    [3]
    ISO/FDIS 15708-1, Non-destructive testing—Radiation methods—Computed tomography. Part 1: Principles[S].
    [4]
    徐留根, 彭春增, 全建龙, 等. 工业CT在航空机载传感器可靠性提升中的应用[J]. 传感器与微系统, 2016, 35(10): 158-160. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201610046.htm

    Xu Liugen, Peng Chunzeng, Quan Jianlong, et al. Applications of industrial CT in reliability improvement of airborne sensors. Transducer and Microsystem Technologies, 2016, 35(10): 158-160 https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201610046.htm
    [5]
    肖永顺. 工业CT在3D打印领域的新应用[C]//2014年全国射线数字成像与CT新技术研讨会论文集. 2014: 5.

    Xiao Yongshun. Application of 3D printing technology in the field of CT technology//Proceedings of National Symposium on Radiographic Digital Imaging and CT Technology in 2014. 2014: 5
    [6]
    高玉玲, 瑞睿, 宋丽君, 等. 工业CT技术在弹药装药密度差测量中的应用[J]. 无损检测, 2014, 36(4): 14-19, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201404004.htm

    Gao Yuling, Rui Rui, Song Lijun, et al. Application of the industrial CT technology in the ammunition charge density difference measurement. Nondestructive Testing, 2014, 36(4): 14-19, 25 https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201404004.htm
    [7]
    方黎勇, 李柏林, 李辉, 等. 工业CT在反求工程上的应用[J]. 强激光与粒子束, 2013, 25(7): 1620-1624. doi: 10.3788/HPLPB20132507.1620

    Fang Liyong, Li Bolin, Li Hui, et al. Application of industrial CT in reverse engineering technology. High Power Laser and Particle Beams, 2013, 25(7): 1620-1624 doi: 10.3788/HPLPB20132507.1620
    [8]
    Bartscher M, Neukamm M, Koch M, et al. Dimensional control of technical components with computed tomography[C]//Metrology and Industry Int, Conf. 2010: 17-19.
    [9]
    Bartscher M, Hilpert U, Fiedler D. Determination of the measurement uncertainty of computed tomography measurements using a cylinder head as an example[J]. Technisches Messen, 2008, 75(3): 178-186. doi: 10.1524/teme.2008.0822
    [10]
    Batenburg K J, Sijbers J. Adaptive thresholding of tomograms by projection distance minimization[J]. Pattern Recognition, 2009, 42(10): 2297-2305.
    [11]
    朱磊. 自适应阈值分割技术及在工业视觉检测中的应用[D]. 无锡: 江南大学, 2014: 19-29.

    Zhu Lei. Adaptive threshold segmentation and its application in industrial visual inspection. Wuxi: Jiangnan University, 2014: 19-29
    [12]
    陈培兴, 王明泉, 李世虎. 基于形态学和Otsu的固体火箭发动机CT缺陷三维分割[J]. 图学学报, 2015, 36(4): 581-586. doi: 10.3969/j.issn.2095-302X.2015.04.015

    Chen Peixing, Wang Mingquan, Li Shihu. 3D CT defects segmentation of solid rocket motor based on the morphology and Otsu. Journal of Graphics, 2015, 36(4): 581-586 doi: 10.3969/j.issn.2095-302X.2015.04.015
    [13]
    Bhowmik U K, Mandala D, Hudyma N W, et al. Segmentation of cracks in X-ray CT images of tested macroporous plaster specimens[C]//2014 Proceedings of IEEE Southeast Conference at Griffin Gate Marriot Resort & Spa. New York: IEEE Prees, 2014: 1-8.
    [14]
    吴永超. C-V方法在CT图像弱边缘检测中的应用研究[D]. 重庆: 重庆大学, 2013: 28-39.

    Wu Yongchao. Application research on weak edge detection of image based on C-V model method. Chongqing: Chongqing University, 2013: 28-39
    [15]
    徐维. 工业CT图像弱边缘检测方法研究[D]. 重庆: 重庆大学, 2012: 51-67.

    Xu Wei. Study on weak edge detection of industrial CT image. Chongqing: Chongqing University, 2012: 51-67
    [16]
    黄朕, 高富强, 郑忠义, 等. 模糊理论改进算法的CT图像弱边缘检测[J]. 强激光与粒子束, 2014, 26: 059001. doi: 10.11884/HPLPB201426.059001

    Huang Zhen, Gao Fuqiang, Zheng Zhongyi, et al. Weak edge detection of CT image based on improved algorithm of fuzzy theory. High Power Laser and Particle Beams, 2014, 26: 059001 doi: 10.11884/HPLPB201426.059001
    [17]
    吴平, 潘晋孝, 刘宾. CT图像边缘退化模型的建立及其在图像尺寸测量中的应用[J]. 光学精密工程, 2009, 17(9): 2269-2275. doi: 10.3321/j.issn:1004-924X.2009.09.030

    Wu Ping, Pan Jinxiao, Liu Bin. Computed tomography image edge degradation model and its application to image size measurement. Optics and Precision Engineering, 2009, 17(9): 2269-2275 doi: 10.3321/j.issn:1004-924X.2009.09.030
    [18]
    戚世乐, 王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306004.htm

    Qi Shile, Wang Meiqing. Adaptive active contour model for weak boundary extraction. Journal of Shandong University(Engineering Science), 2013, 43(6): 17-21 https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306004.htm
    [19]
    Licm, Xu C Y, Gui C F, et al. Level set evolution without re-initialization: a new variational formulation[C]// Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE CS, 2005: 430-436.
    [20]
    李钦弟, 蔡利栋. 一种基于非线性灰度变换的弱边缘检测方法[J]. 中国体视觉与图像分析, 2011, 16(3): 232-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201103004.htm

    Li Qindi, Cai Lidong. A weak edge detection method based on nonlinear transform of gray levels. Chinese Journal of Stereology and Image Analysis, 2011, 16(3): 232-236 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201103004.htm
    [21]
    张祥春, 张鹭, 王俊涛. 工业CT技术在航空发动机单晶叶片壁厚测量中的应用[J]. 无损检测, 2015, 37(2): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201502006.htm

    Zhang Xiangchun, Zhang Lu, Wang Juntao. The application of industrial CT technology in the aero-engine single crystal blades for wall thickness measurement. Nondestructive Testing, 2015, 37(2): 20-22 https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201502006.htm
    [22]
    GB/T 29067-2012, 损检测工业计算机层析成像(CT)图像测量方法[S].

    GB/T 29067-2012. Non-destructive testing—Test method for measuring industrial computed tomography(CT)image
    [23]
    齐子诚, 倪培君, 沈建云, 等. 基于中心距像素标定的工业CT尺寸测量方法[J]. 兵器材料科学与工程, 2017, 40(5): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201705031.htm

    Qi Zicheng, Ni Peijun, Shen Jianyun, et al. Industrial CT dimension measurement method based on center-to-pixel calibration. Ordnance Material Science and Engineering, 2017, 40(5): 122-126 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201705031.htm
    [24]
    Carton A K, Vandenbroucke D, Struye L, et al. Validation of MTF measurement for digital mammography quality control[J]. Med Phys, 2005, 32(6): 1684-1695.
    [25]
    Maidment A D A, Albert M. Conditioning data for calculation of the modulation transfer function[J]. Med Phys, 2003, 30(2): 248-253.
    [26]
    Greer P B, Doorn V T. Evaluation of an algorithm for the assessment of the MTF using an edge method[J]. Med Phys, 2000, 27(9): 2048-2059.
  • Relative Articles

    [1]Li Jianbing, Lin Pengfei, Hao Baoliang, Sun Jianbang. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32(7): 073001. doi: 10.11884/HPLPB202032.200095
    [2]Cui Ding, Deng Zhaoxiang, Ye Changchun, Xian Yuqiang. Model updating of a ϕ150 mm mirror including joint parts[J]. High Power Laser and Particle Beams, 2019, 31(9): 091001. doi: 10.11884/HPLPB201931.190012
    [3]Xu Xiaorong, Wang Yinong, Dai Dafu, Yao Yao, Zheng Shanlun. Design of 2 MHz/80 kW RF power coupling system for ion source[J]. High Power Laser and Particle Beams, 2018, 30(12): 125104. doi: 10.11884/HPLPB201830.180191
    [4]Liu Jie, Zhang Jian, Jiang Jun, Tian Yaoling, Deng Xianjin. Design of D-band power amplifier[J]. High Power Laser and Particle Beams, 2016, 28(02): 023102. doi: 10.11884/HPLPB201628.023102
    [5]Qi Yunxuan, Liu Chong, Zhang Xiang, Ye Zhibin, Xiang Zhen, Chen Jun. Beam quality enhancement in side-pumped master oscillator power amplifier system[J]. High Power Laser and Particle Beams, 2014, 26(09): 091023. doi: 10.11884/HPLPB201426.091023
    [6]Duan Liming, Bai Yang, Wang Wuli, Wang Yong, Wang Haoyu, Liu Fenglin. Simplification with feature preserving for mesh model reconstructed by industrial CT serial images[J]. High Power Laser and Particle Beams, 2014, 26(11): 114004. doi: 10.11884/HPLPB201426.114004
    [7]Dou Haifeng, Li Rundong, Xu Jiayun, Yuan Shu, Tang Fengping. Physical model of neutron depth profiling in common conditions[J]. High Power Laser and Particle Beams, 2013, 25(05): 1279-1282. doi: 10.3788/HPLPB20132505.1279
    [8]Tang Yi’nan, Zhao Wei, Xie Xiaoping. Atmospheric channel simplification single scatter model[J]. High Power Laser and Particle Beams, 2013, 25(01): 22-26. doi: 10.3788/HPLPB20132501.0022
    [9]Wang Huihui, Meng Lin, Liu Dagang, Yang Chao, Peng Kai. Conservational model for formation process of magnetic insulation[J]. High Power Laser and Particle Beams, 2012, 24(08): 2013-2016. doi: 10.3788/HPLPB20122408.2013
    [10]Gao Guishan, Fu Zhen, Yao Bin, Qin WeidonG, He An, Wei BinG, WanG Zhi. Circuit model of Rimfire switch[J]. High Power Laser and Particle Beams, 2012, 24(04): 851-854. doi: 10.3788/HPLPB20122404.0851
    [11]xiao hu, dong xiaolin, wang xiaolin, ma yanxing, zhou pu, xu xiaojun, zhao guomin. China-made high power fiber amplifier in all-fiber configuration[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [12]liu weidong, liu shanghe, bi junjian, hu xiaofeng. Nonlinear identification modeling and compensating of electromagnetic pulse measurement system[J]. High Power Laser and Particle Beams, 2011, 23(12): 57-58.
    [13]ma yanxing, si lei, zhou pu, wang xiaolin, ma haotong, li xiao, xu xiaojun, liu zejin. Coherent beam combining of MOPA with multi-dithering technique[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [14]ni gu-yan, luo jian-shu, li chuan-lu. Comparison of Taylor and Agrawal coupling models and their analytic solutions[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [15]wang lin, xuan ke, feng guang-yao, wu cong-feng, zhang he, xu hong-liang, li wei-min. Lattice model calibration of Hefei light source storage ring[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [16]lu rong-hua, han shen-sheng. Model of fast ignition by exploding push[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [17]sun yi yi, dong hao, bi zhao hui, li zhi ping. Intercomparison of models for radiative transfer in the atmosphere[J]. High Power Laser and Particle Beams, 2004, 16(02): 0- .
    [18]yu jian-hua, lai jian-jun. Two-electron-group model for a capacitively-coupled RF glow discharge with characteristics analogous to a hollow cathode discharge[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
    [19]du yan-yi, liu xing-rong, shu xiao-jian, wang yuan-zhang, li shou-xian. Simplified model calculation for COIL[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
    [20]wang wei-min, luo bin, gao qing-song, pang yu, lu bai-da. Study on LD side-pumped Nd:YAG slab double-pass amplifier[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Cited by

    Periodical cited type(5)

    1. 张薇,张少甫,牛作成. 强电磁脉冲对导弹无线通信系统的干扰分析. 舰船电子对抗. 2023(01): 22-27+90 .
    2. 王海军,聂孝亮,刘海业,王岩. 交叉极化干扰对探测跟踪雷达测角影响研究. 现代防御技术. 2019(05): 99-104 .
    3. 王海军,戴幻尧,聂孝亮,刘海业. 交叉极化干扰对阵列雷达测角影响研究. 航空兵器. 2019(06): 68-74 .
    4. 鲍志超,莫翠琼,王正. PD雷达导引头干扰效果评估. 舰船电子对抗. 2017(01): 35-38+73 .
    5. 胡建国. 某特殊钢厂电磁干扰故障分析及改进方案. 新技术新工艺. 2017(04): 65-67 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.8 %FULLTEXT: 15.8 %META: 83.1 %META: 83.1 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %United States: 0.2 %United States: 0.2 %上海: 1.0 %上海: 1.0 %中山: 0.1 %中山: 0.1 %乔治亚: 0.1 %乔治亚: 0.1 %佛山: 0.2 %佛山: 0.2 %内江: 0.3 %内江: 0.3 %北京: 16.0 %北京: 16.0 %南京: 0.2 %南京: 0.2 %台州: 0.1 %台州: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.1 %天津: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 1.1 %张家口: 1.1 %成都: 0.1 %成都: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %漯河: 0.3 %漯河: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %美国爱荷华阿尔图纳: 0.1 %美国爱荷华阿尔图纳: 0.1 %芒廷维尤: 18.8 %芒廷维尤: 18.8 %西宁: 53.8 %西宁: 53.8 %西安: 0.1 %西安: 0.1 %运城: 0.1 %运城: 0.1 %重庆: 0.1 %重庆: 0.1 %其他ChinaIndiaUnited States上海中山乔治亚佛山内江北京南京台州哥伦布嘉兴天津广州张家口成都晋城普洱杭州桃园武汉深圳温州漯河秦皇岛绍兴绵阳美国爱荷华阿尔图纳芒廷维尤西宁西安运城重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1903) PDF downloads(257) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return