Volume 30 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Two dimensional elastoplastic MHD numerical simulation[J]. High Power Laser and Particle Beams, 2018, 30: 065002. doi: 10.11884/HPLPB201830.170306
Citation: Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Two dimensional elastoplastic MHD numerical simulation[J]. High Power Laser and Particle Beams, 2018, 30: 065002. doi: 10.11884/HPLPB201830.170306

Two dimensional elastoplastic MHD numerical simulation

doi: 10.11884/HPLPB201830.170306
  • Received Date: 2017-08-07
  • Rev Recd Date: 2018-01-18
  • Publish Date: 2018-06-15
  • In magnetically driven experiments, such as solid liner implosion, magnetically driven flyer plate emission and magnetically driven quasi-isentropic/impulse compression, the metal starts from a solid phase and gradually turns into liquid phase by ohmic heating. In order to study the effects of material hardness the solid phase has on those magnetically driven experiments, we have added an elastoplasticitic module to the two-dimensional magnetically driven simulation code (MDSC2). With this code, we carried out numerical simulations of the development of Rayleigh-Taylor (RT) instability in magnetically driven solid liner implosion. The numerical results show that while the elastoplasticitic term has little effect on the trajectories of the inner and outer radius of the solid liner without an initial disturbance, it suppresses significantly the RT instability growth of the magnetically driven solid liner with an initial disturbance.
  • loading
  • [1]
    Matzen M K, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Phys Plasmas, 2005, 12: 055503. doi: 10.1063/1.1891746
    [2]
    Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
    [3]
    Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Phys Plasmas, 2003, 10(4): 1092-1099. doi: 10.1063/1.1554740
    [4]
    Lemke R W, Knudson M D, Robinson A C, et al. Self-consistent, two-dimensional, magneto-hydrodynamic simulations of magnetically driven flyer plates[J]. Phys Plasmas, 2003, 10(5): 1867-1874. doi: 10.1063/1.1557530
    [5]
    Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. J Appl Phys, 2005, 98: 073530. doi: 10.1063/1.2084316
    [6]
    Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [7]
    Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. J Appl Phys, 2014, 116: 204903. doi: 10.1063/1.4902863
    [8]
    Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. J Appl Phys, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
    [9]
    Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Phys Rev Lett, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505
    [10]
    Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [11]
    Frese M H. MACH2: A two-dimensional magneto-hydrodynamic simulation code for complex experimental configurations[R]. AMRC-R-874, 1987.
    [12]
    Robinson A C, Brunner T A, Carroll S, et al. ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code[C]//46th AIAA Areospace Sciences Meeting and Exhibit. 2008.
    [13]
    Chittenden J P, Lebedev S V, Jennings C A, et al. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches[J]. Plasma Phys Control Fusion, 2004, 46: B457-B476. doi: 10.1088/0741-3335/46/12B/039
    [14]
    Weinwurm M, Bland S N, Chittenden J P. Metal liner-driven cylindrically convergent isentropic compression of cryogenic deuterium[J]. Journal of Physics, 2014, 500: 082002.
    [15]
    丁宁, 邬吉明, 杨震华, 等. Z箍缩内爆MRAED程序1维模拟分析[J]. 强激光与粒子束, 2008, 20(2): 212-218. http://www.hplpb.com.cn/article/id/3023

    Ding Ning, Wu Jiming, Yang Zhenghua, et al. Simulation of Z-pinch implosion using MARED code. High Power Laser and Particle Beams, 2008, 20(2): 212-218 http://www.hplpb.com.cn/article/id/3023
    [16]
    阚明先, 蒋吉昊, 王刚华, 等. 套筒内爆ALE方法二维MHD数值模拟[J]. 四川大学学报, 2007, 44(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX200701019.htm

    Kan Mingxian, Jiang Jihao, Wang Ganghua, et al. ALE simulation 2D MHD for liner. Journal of Sichuan University, 2007, 44(1): 91-96 https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX200701019.htm
    [17]
    阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8): 2137-2141. doi: 10.3788/HPLPB20132508.2137

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137
    [18]
    段书超, 王刚华, 谢卫平, 等. FOI-PERFECT程序对电磁驱动高能量密度系统的三维弛豫磁流体力学模拟[J]. 强激光与粒子束, 2016, 28: 045014. doi: 10.11884/HPLPB201628.125014

    Duan Shuchao, Wang Ganghua, Xie Weiping, et al. 3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems. High Power Laser and Particle Beams, 2016, 28: 045014 doi: 10.11884/HPLPB201628.125014
    [19]
    Ding Ning, Zhang Yang, Xiao Delong, et al. Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM[J]. Matter and Radiation at Extremes, 2016, 1(3): 135-152. doi: 10.1016/j.mre.2016.06.001
    [20]
    阚明先, 张朝辉, 段书超, 等. "聚龙一号"装置上磁驱动铝飞片实验的数值模拟[J]. 强激光与粒子束, 2015, 27: 125001. doi: 10.11884/HPLPB201527.125001

    Kan Mingxian, Zhang Zhaohui, Duan Shuchao, et al. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator. High Power Laser and Particle Beams, 2015, 27: 125001 doi: 10.11884/HPLPB201527.125001
    [21]
    阚明先, 段书超, 王刚华, 等. 自由面被烧蚀飞片的数值模拟[J]. 强激光与粒子束, 2017, 29: 045003. doi: 10.11884/HPLPB201729.160482

    Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Numerical simulation of magnetically driven flyer plate of ablated free surface. High Power Laser and Particle Beams, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482
    [22]
    杨龙, 王刚华, 阚明先, 等. 基于MDSC程序的Z箍缩内爆单温和三温模拟分析[J]. 高压物理学报, 2016, 30(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201601011.htm

    Yang Long, Wang Ganghua, Kan Mingxian, et al. A numerical simulation analysis of mono-temperature and tri-temperature models by MDSC program in Z-pinch implosion. Chinese Journal of High Pressure Physics, 2016, 30(1): 64-70 https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201601011.htm
    [23]
    Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. J Appl Phys, 1980, 51(3): 1498-1504. doi: 10.1063/1.327799
    [24]
    Yao Songlin, Pei Xiaoyang, Yu Jidong, et al. A dislocation-based explanation of quasi-elastic release in shock-loaded aluminum[J]. J Appl Phys, 2017, 121: 035101. doi: 10.1063/1.4974055
    [25]
    杨礼兵, 孙承纬, 廖海东, 等. 高能密度物理实验装置FP-1及其应用[J]. 强激光与粒子束, 2002, 14(5): 767-770. http://www.hplpb.com.cn/article/id/1404

    Yang Libing, Sun Chengwei, Liao Haidong, et al. High energy density physics facility FP-1 and its applications. High Power Laser and Particle Beams, 2002, 14(5): 767-770 http://www.hplpb.com.cn/article/id/1404
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (1287) PDF downloads(185) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return