Wang Xinhua, Pei Yuyang, Yang Jian. Development and application of temperature-dependent thermal neutron scattering data of light water for compensated neutron logging[J]. High Power Laser and Particle Beams, 2015, 27: 074003. doi: 10.11884/HPLPB201527.074003
Citation: Shi Huantong, Zou Xiaobing, Zhu Xinlen, et al. Research on early stages of wire array Z-pinch[J]. High Power Laser and Particle Beams, 2018, 30: 085001. doi: 10.11884/HPLPB201830.170320

Research on early stages of wire array Z-pinch

doi: 10.11884/HPLPB201830.170320
  • Received Date: 2017-12-24
  • Rev Recd Date: 2018-04-13
  • Publish Date: 2018-08-15
  • Electrical explosion of wire (EEW) is the first stage of wire array Z-pinch, which has great influence on the following dynamics and the final X-ray emission.In this paper, the physical processes of two-wire Z-pinch was observed by X-ray backlighting.The sub-nanosecond, micrometer-scale X-ray source was generated with X-pinches connected in series with the Zpinch.Experimental results show that electrically exploded wires in vacuum usually develop into "core-corona"structure (highdensity core surrounded by low-density corona plasma).The corona plasma is then driven to the axis by global magnetic field to form a precursor plasma column, adding to the instabilities of the implosion stage.Therefore single wire EEW experiments were carried out to increase the energy deposition of wire core so as to suppress the formation of"core-corona"structure.Experimental results show that the performance of EEW can be improved by higher rising-rate of driving current and positive radial electric field along wire surface.In order to combine the two favorable methods, a flashover switch was inserted between wire-end and cathode.As a result, the specific energy of EEW was increased by 2 times (5.7 eV/atomvs 13 eV/atom) and 3.5 times (3.4 eV/atomvs12 eV/atom) under positive and negative driving current, exceeding the atomization enthalpy of tungsten (8.8 eV/atom) by a factor of 1.4.The laser interferograms show no high-density wire core; in other words, fully vaporized (core-free) wire explosion of bare tungsten wire was achieved.
  • [1]
    Haines M G, Lebedev S V, Chittenden J P, et al. The past, present, and future of Z pinches[J]. Phys Plasmas, 2000, 7(52): 1672-1680.
    [2]
    Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Rev Mod Phys, 2000, 72(1): 167-223.
    [3]
    Deeney C, Douglas M R, Spielman R B, et al. Enhancement of X-ray Power from a Z Pinch Using Nested-Wire Arrays[J]. Phys Rev Lett, 1998, 81(22): 4883-4886. doi: 10.1103/PhysRevLett.81.4883
    [4]
    Spielman R B, Deeney C, Chandler G A, et al. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ[J]. Phys Plasmas, 1998, 5(5): 2105-2111. doi: 10.1063/1.872881
    [5]
    Lebedev S V, Beg F N, Bland S N, et al. Snowplow-like behavior in the implosion phase of wire array Z pinches[J]. Phys Plasmas, 2002, 9(52): 2293-2301.
    [6]
    Lebedev S V, Beg F N, Bland S N, et al. Effect of discrete wires on the implosion dynamics of wire array Z pinches[J]. Phys Plasmas, 2001, 8(8): 3734-3747. doi: 10.1063/1.1385373
    [7]
    Zhu X, Zou X, Zhang R, et al. X-ray backlighting of the initial stage of single-wire and multi-wire Z-Pinch[C]//Proc of IPMHVC. 2012: 574-577.
    [8]
    赵屾, 朱鑫磊, 石桓通, 等. 用X-pinch对双丝Z箍缩进行轴向X射线背光照相[J]. 物理学报, 2015, 64(1): 201-206. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201501026.htm

    Zhao Shen, Zhu Xinlei, Shi Huantong, et al, Axial backlighting of two-wire Z-pinch using an X-pinch as an X-ray source. Acta Physica Sinica, 2015, 64(1): 201-206 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201501026.htm
    [9]
    Shi H, Zou X, Wang X. Effect of high-voltage electrode geometry on energy deposition into exploding wire in vacuum[J]. IEEE Trans Dielectr Electr Insul, 2017, 24(4): 2001-2005.
    [10]
    Shi H, Zou X, Wang X. Fully vaporized electrical explosion of bare tungsten wire in vacuum[J]. Appl Phys Lett, 2016, 109(13): 5063-929.
    [11]
    Sarkisov G S, Rosenthal S E, Cochrane K R, et al. Nanosecond electrical explosion of thin aluminum wires in a vacuum: Experimental and computational investigations[J]. Phys Rev E, 2005, 71: 046404.
    [12]
    Sarkisov G S, Struve K W, Mcdaniel D H. Effect of current rate on energy deposition into exploding metal wires in vacuum[J]. Phys Plasmas, 2004, 11(10): 4573-4581.
    [13]
    Tucker T J, Toth R P. A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[R]. Sand-75-0041 Unlimited distribution, 1975.
    [14]
    Sarkisov G S, Struve K W, Mcdaniel D H. Effect of deposited energy on the structure of an exploding tungsten wire core in a vacuum[J]. Phys Plasmas, 2005, 12: 052702.
    [15]
    Lebedev S V, Savvatimskii A I. Metals during rapid heating by dense currents[J]. Sov Phys-Uspekh, 1984, 27(10): 749-771.
    [16]
    Lebedev S V. Electrical explosion study of certain thermophysical properties of tungsten and molybdenum near the melting point[J]. High Temp, 1971, 9(5): 845-849.
  • Relative Articles

    [1]Huang Ruixian, Xi Chuanyi, Han Liqi, Yu Jinqing, Yu Tongpu, Yan Xueqing. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35(1): 012009. doi: 10.11884/HPLPB202335.220229
    [2]Wang Yancheng, Cao Zongwei, Sun Xiangyang, Luo Wen. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2023, 35(9): 091006. doi: 10.11884/HPLPB202335.230079
    [3]Peng Ziyang, Cao Zhengxuan, Gao Ying, Chen Shiyou, Zhao Jiarui, Ma Wenjun. Application of liquid film targets in laser-driven radiation sources and laser ion acceleration[J]. High Power Laser and Particle Beams, 2022, 34(8): 081003. doi: 10.11884/HPLPB202234.220107
    [4]Liu Qinghua, Li Jing, Shan Lijun, Xiao Dexin, Pan Qing, Liu Yu, Wang Hanbin, Hu Dongcai, Zhang Peng, Li Shoutao, Wang Jianxin, Zhang Demin, Yan Longgang, Zhang Xiaoli, Gan Kongyin, Zhang Chengxin, Li Peng, Shen Xuming, Bo Wei, Chen Yunbin, Li Xiaohui, Wang Shuaihua, Yu Yong, Chen Hao, Hu Xiutai, Ma Guowu, Zhou Kui, Zhou Zheng, Wang Yuan, Yang Xingfan, Wu Dai, Li Ming, Chen Menxue, Hu Jinguang, Zhao Jianheng, Fan Guobin. High-energy CT system with 10 lp/mm spatial resolution[J]. High Power Laser and Particle Beams, 2022, 34(12): 124001. doi: 10.11884/HPLPB202234.220322
    [5]Li Peng, Wang Jianxing, Xiao Dexin, Zhou Zheng, Zhou Kui, Li Shigen, Lao Chenglong, Shen Xuming, Yang Longang, Liu Yu, Liu Jie, Hu Dongcai, Wu Dai, Yang Xingfan, Li Ming. Verification experiment of micro focus X-ray source with energy 9 MeV and beam size less than 0.1 mm[J]. High Power Laser and Particle Beams, 2020, 32(5): 054001. doi: 10.11884/HPLPB202032.200086
    [6]He Hui, Yu Haijun, Wang Yi, Dai Wenhua. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [7]Li Qin, Wang Yi, Li Chenggang, Li Hong, Qi Shuangxi, Liu Yunlong, Cheng Jinming, Li Tiantao, Long Quanhong. High energy X-ray spot size measurement with rollbar[J]. High Power Laser and Particle Beams, 2016, 28(04): 045106. doi: 10.11884/HPLPB201628.125106
    [8]Li Ling, Gao Fuqiang, Zhou Qin, Yan Qiang, Cai Yufang. Cupping artifact correction for low-energy X-ray industrial CT images[J]. High Power Laser and Particle Beams, 2014, 26(05): 059004. doi: 10.11884/HPLPB201426.059004
    [9]Zhou Qin, Gao Fuqiang, Chen Danqing, Chen Shengfei. Design of small interval signal acquisition system for low-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2013, 25(01): 114-118. doi: 10.3788/HPLPB20132501.0114
    [10]ou long, hu dongcai, chen hao, wang yuan, xu zhou. Design of embedded synchronization system for high energy industry CT based on FPGA[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [11]li chenggang, deng jianjun, shi jinshui, li qin, jiang xiaoguo, wang yuan, zhang kaizhi, li jin, zhang linwen. Time-resolved spot size diagnosis for high-energy X-ray source[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [12]duan li-ming, liao ping, zhang ping, li sheng-e. Design of data transmission system for high-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [13]duan li-ming, liao ping. Design of scanning motion control system for high-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [14]hu guang-yue, liu shen-ye, zhang ji-yan, yang jia-min, ding yong-kun, hu xin, huang yi-xiang, du hua-bing, yi rong-qing, zheng jian. Emission characteristic of long laser pulse keV X-ray source[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [15]hou li-fei, yi rong-qing, du hua-bing, liu shen-ye, zhu jing-tao, zhao yi-dong, cui ming-qi. Reflectivity calibration of soft X-ray multilayer mirror in Beijing Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [16]liu yuan-qiong, gao dang-zhong, liu li-xiang, luo qing, ye cheng-gang. Phase-contrast imaging with micro-focus X-ray source[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [17]tian you-wei, yu wei, lu pei-xiang, he feng, ma fa-jun, xu han, qian lie-jia. Laser synchrotron radiation as attosecond X-ray source[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [18]chen hao, xu zhou, jin xiao, li ming, shan li jun, lu he ping, yang xing fan, deng ren pei, zhang zhi fu, liu xi san. Spot size measurement of new type Xray source designed for high energy industrial CT[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [19]guo wei, gu jia hui, cai xiang zhou, shen wen qing. Preliminary discussion of laser synchrotron source construction[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [20]yang jiamin, yi rongqing, chen zhenlin, sun kexu, li chaoguang, ding yaonan, zheng zhijian, cui mingqi, zhu peiping, cui congwu. EXPERIMENTAL CALIBRATION OF RESPONSE CURVES FOR SOFT X-RAY FILM 5FW ON SYNCHROTRON RADIATION[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 童维超,蒋柏斌,吴小军,李国,黄燕华,张春雨,马小军. 基于圆弧刀补偿加工的平面调制切削技术研究. 四川大学学报(自然科学版). 2024(02): 127-132 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 69.7 %META: 69.7 %PDF: 6.2 %PDF: 6.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.9 %其他: 0.9 %Canton: 0.4 %Canton: 0.4 %China: 0.9 %China: 0.9 %Germany: 0.4 %Germany: 0.4 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Japan: 0.1 %Japan: 0.1 %Pontevedra: 0.2 %Pontevedra: 0.2 %Romania: 0.1 %Romania: 0.1 %Taoyuan District: 0.2 %Taoyuan District: 0.2 %United Kingdom: 0.8 %United Kingdom: 0.8 %United States: 0.2 %United States: 0.2 %[]: 1.2 %[]: 1.2 %三明: 0.1 %三明: 0.1 %上海: 2.0 %上海: 2.0 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.4 %丽水: 0.4 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %光州: 0.2 %光州: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 7.0 %北京: 7.0 %南京: 0.2 %南京: 0.2 %南昌: 0.8 %南昌: 0.8 %卡利亚里: 0.2 %卡利亚里: 0.2 %卡尔斯鲁厄: 0.4 %卡尔斯鲁厄: 0.4 %台州: 1.1 %台州: 1.1 %台湾省: 0.3 %台湾省: 0.3 %合肥: 0.1 %合肥: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣何塞: 0.2 %圣何塞: 0.2 %圣克拉拉: 0.3 %圣克拉拉: 0.3 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大连: 0.4 %大连: 0.4 %天津: 0.3 %天津: 0.3 %安顺: 0.1 %安顺: 0.1 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 0.3 %密蘇里城: 0.3 %常州: 0.2 %常州: 0.2 %广州: 0.2 %广州: 0.2 %庆阳: 0.1 %庆阳: 0.1 %张家口: 0.5 %张家口: 0.5 %张掖: 0.1 %张掖: 0.1 %徐州: 0.1 %徐州: 0.1 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 0.8 %成都: 0.8 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %梅州: 0.1 %梅州: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.1 %泉州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.3 %温州: 0.3 %湖州: 0.9 %湖州: 0.9 %滁州: 0.1 %滁州: 0.1 %漯河: 0.6 %漯河: 0.6 %烟台: 0.1 %烟台: 0.1 %益阳: 0.1 %益阳: 0.1 %石嘴山: 0.1 %石嘴山: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.2 %米兰: 0.2 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.6 %绵阳: 0.6 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 23.3 %芒廷维尤: 23.3 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.4 %莫斯科: 0.4 %衡阳: 0.2 %衡阳: 0.2 %衢州: 1.0 %衢州: 1.0 %西宁: 33.2 %西宁: 33.2 %西安: 0.7 %西安: 0.7 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.0 %运城: 1.0 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %重庆: 0.8 %重庆: 0.8 %金华: 0.3 %金华: 0.3 %长春: 0.4 %长春: 0.4 %长沙: 0.7 %长沙: 0.7 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %雅安: 0.2 %雅安: 0.2 %青岛: 0.7 %青岛: 0.7 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %黔西南: 0.1 %黔西南: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他其他CantonChinaGermanyIndiaIran (ISLAMIC Republic Of)JapanPontevedraRomaniaTaoyuan DistrictUnited KingdomUnited States[]三明上海东莞中山临汾临沂丹东丽水佛山保定光州兰州北京南京南昌卡利亚里卡尔斯鲁厄台州台湾省合肥哈尔滨嘉兴圣何塞圣克拉拉圣彼得堡大连天津安顺宣城密蘇里城常州广州庆阳张家口张掖徐州德黑兰成都扬州新乡无锡昆明普洱杭州梅州武汉沈阳泉州洛阳深圳温州湖州滁州漯河烟台益阳石嘴山石家庄福州秦皇岛米兰纽约绵阳美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科衡阳衢州西宁西安贵阳运城邯郸郑州重庆金华长春长沙长治阳泉雅安青岛香港特别行政区黔西南龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views (1372) PDF downloads(254) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return