Qing Chun, Wu Xiaoqing, Li Xuebin, et al. Forecast upper air optical turbulence based on weather research and forecasting model[J]. High Power Laser and Particle Beams, 2015, 27: 061009. doi: 10.11884/HPLPB201527.061009
Citation: Tao Xuefeng, Liu Kun. Pulse shaping method for compulsator[J]. High Power Laser and Particle Beams, 2018, 30: 095001. doi: 10.11884/HPLPB201830.170325

Pulse shaping method for compulsator

doi: 10.11884/HPLPB201830.170325
  • Received Date: 2017-12-25
  • Rev Recd Date: 2018-02-20
  • Publish Date: 2018-09-15
  • Based on a two-phase four-poles air-core compulsator, the discharge pulse shape optimization problem is studied. The characteristics of three typical kinds of loads for compulsator: electromagnetic rail guns, flashlamps and electro-thermal chemical guns are analyzed, whose requirements for pulse shape are significantly different. Optimization indexes are proposed for different loads to quantify the fitness of discharge pulse, transferring the pulse shaping problem into function optimization problem. For electromagnetic rail guns, the optimization index is the "acceleration ratio" of the projectile, which is the ratio of maximum acceleration and average acceleration during launch process. The larger acceleration ratio is, the flatter the waveform is. By expanding the concept of acceleration ratio, this index can be applied on flashlamps. For electro-thermal chemical guns, the concept of "shape variance" is proposed to measure the pulse shape. Simulation results show that the proposed optimization indexes are effective. With the help of intelligent optimization algorithm, we can get the optimized discharge pulse for different loads. Simultaneously, it is verified that the two-phase compulsator has strong flexibility in waveform adjustment.
  • [1]
    McNab I R. Pulsed power options for large EM launchers[J]. IEEE Trans Plasma Sci, 2015, 43(5): 1352-1357. doi: 10.1109/TPS.2014.2372173
    [2]
    Dai Ling, Dong Hanbin, Lin Fuchang, et al. Miniaturization of thyristor applied in pulse power supply[J]. Trans of China Electrotechnical Society, 2012, 27(8): 120-125.
    [3]
    Tang Lei, Yu Kexun. Investigation of the transient inductance for a pulsed alternator with fully passive compensation[J]. IEEE Trans Plasma Sci, 2016, 44(1): 71-78. doi: 10.1109/TPS.2015.2507399
    [4]
    Herbst J, Beno J, Ouroua A, et al. High slew rate power supplies for support of large pulsed loads[C]//IEEE Electric Ship Technologies Symposium (ESTS). 2015: 446-452.
    [5]
    Driga M D, Pratap S B, Weldon W F. Design of compensated pulsed alternators with current waveform flexibility[C]//6th IEEE Pulsed Power Conference. 1987.
    [6]
    Gao Liang, Li Zhenxiao, Li Baoming. The modeling and calculation on an air-core passive compulsator[J]. IEEE Trans Plasma Sci, 2015, 43(3): 864-868. doi: 10.1109/TPS.2015.2394352
    [7]
    Cui S M, Zhao W D, Wang S F, et al. Investigation of multiphase compulsator systems using a Co-simulation method of FEM-circuit analysis[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1247-1253. doi: 10.1109/TPS.2013.2248389
    [8]
    王昊泽. 基于磁悬浮飞轮储能的被动补偿脉冲发电系统研究[D]. 长沙: 国防科学技术大学, 2010.

    Wang Haoze. Study on the compulsator system based on magnetic suspension flywheel. Changsha: National University of Defense Technology, 2010
    [9]
    朱博峰, 鲁军勇, 王杰. 轻小型脉冲电源驱动的电磁发射系统建模[J]. 海军工程大学学报, 2016, 28(3): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX2016S1021.htm

    Zhu Bofeng, Lu Junyong, Wang Jie. Modeling of electromagnetic launch system driven by CPA. Journal of Naval University of Engineering, 2016, 28(3): 100-104 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX2016S1021.htm
    [10]
    Pratap S B, Driga M D, Weldon W F, et al. Future trends for compulsators driving railguns[J]. IEEE Trans Magn, 1986, 22(6): 1681-1683. doi: 10.1109/TMAG.1986.1064680
    [11]
    Pratap S B, Hsieh K T, Driga M D, et al. Advanced compulsators for railguns[J]. IEEE Trans Magnetics, 1989, 25(1): 454-459. doi: 10.1109/20.22581
    [12]
    陈佳, 李海兵, 蒋宝财, 等. 脉冲氙灯放电时等离子体电阻的研究[J]. 激光与红外, 2009, 39(2): 190-193. doi: 10.3969/j.issn.1001-5078.2009.02.019

    Chen Jia, Li Haibing, Jiang Baocai, et al. Research on the impedance of plasma in xenon flash lamp during discharging. Laser and Infrared, 2009, 39(2): 190-193 doi: 10.3969/j.issn.1001-5078.2009.02.019
    [13]
    Winstanley P A. The role of pulse power in flashlamp pumped lasers[C]//IEE Colloq on Pulsed Power. 1997.
    [14]
    Loeb A, Kaplan Z. A theoretical model for the physical processes in the confined high pressure discharges of electrothermal launchers[J]. IEEE Trans Magn, 25(1): 342-346. doi: 10.1109/20.22561
    [15]
    Driga M D, Ingram M W, Weldon W F. Electrothermal accelerators: the power conditioning point of view[J]. IEEE Trans Magnetics, 25(1): 147-152. doi: 10.1109/20.22524
  • Relative Articles

    [1]Xu Rui, Wang Bangji, Liu Qingxiang, Wang Dong, Weng Hong. Position process control system of miniature brushless DC motor[J]. High Power Laser and Particle Beams, 2022, 34(4): 043001. doi: 10.11884/HPLPB202234.210162
    [2]Zhou Lei, Wang Bangji, Liu Qingxiang, Li Xiangqiang, Zhang Jianqiong. Multi-axis DC motor controller for phased array antenna applications implemented on FPGA[J]. High Power Laser and Particle Beams, 2018, 30(1): 013001. doi: 10.11884/HPLPB201830.170188
    [3]Zhang Hongwei, Liu Chaoyang, Yu Zhihua, Liu Honghua. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30(7): 073008. doi: 10.11884/HPLPB201830.170531
    [4]Chen Gang, Wen Chunmei, Li Yuhui. Calibration and installation of a permanent magnet phase shifter based on nonlinear parameter estimation[J]. High Power Laser and Particle Beams, 2018, 30(12): 125106. doi: 10.11884/HPLPB201830.180205
    [5]Huang Zijiang, He Hengxiang, Jiang Zhongming, Liu Pan, Zhang Qiang, Huang Kai. Design of high-precision timing control system in combined pulse laser[J]. High Power Laser and Particle Beams, 2016, 28(12): 125005. doi: 10.11884/HPLPB201628.160157
    [6]Wan Rongxin, Li Xiangqiang, Liu Qingxiang, Wang Bangji, Zhou Lei. Design of IP core for DC micromotor controller based on FPGA[J]. High Power Laser and Particle Beams, 2016, 28(03): 033011. doi: 10.11884/HPLPB201628.033011
    [7]Deng Guangjian, Huang Wenhua, Li Jiawei, Shao Hao, Ba Tao, Zhang Zhiqiang. High power ferrite phase shifter based on structure of waveguide in parallel[J]. High Power Laser and Particle Beams, 2016, 28(08): 083006. doi: 10.11884/HPLPB201628.151095
    [8]Yan Fabao, Su Yanrui, Yang Hong, Liu Jianxin. High-precision optical platform focusing control system[J]. High Power Laser and Particle Beams, 2015, 27(09): 091009. doi: 10.11884/HPLPB201527.091009
    [9]Zhang Dewei, Li Wenchao, Zhou Dongfang, Wang Yongfei, Deng Hailin. Design of Ka-band reflection-type analog electrically controlled phase shifter[J]. High Power Laser and Particle Beams, 2015, 27(05): 053001. doi: 10.11884/HPLPB201527.053001
    [10]Li Guohui, Yang Yuan, He Zhongwu, Xiang Rujian, Wu Jing, Xu Honglai, Yan Hong, Lu Fei, Hu Ping. High accuracy optical axis stable control in beam system of four lasers[J]. High Power Laser and Particle Beams, 2014, 26(03): 031009. doi: 10.3788/HPLPB201426.031009
    [11]Ma Jun, Wang Honggang, Du Guangxing, Qian Baoliang. Preliminary design of TM11-TE10 mode converter in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063004. doi: 10.11884/HPLPB201426.063004
    [12]Zhou Yifei, Liu Qingxiang, Li Xiangqiang, Wang Bangji, Zhou Lei, Li Wei. Simulation of helical antenna stepper motor control system and optimization of running curve[J]. High Power Laser and Particle Beams, 2014, 26(06): 063020. doi: 10.11884/HPLPB201426.063020
    [13]Du Kai, Li Guo, Tong Weichao, Huang Yanhua, Tang Yongjian. Accuracy control of capsule micro holes in fast ignition based on single point diamond turning[J]. High Power Laser and Particle Beams, 2013, 25(12): 3225-3229. doi: 3225
    [14]Su Rongtao, Zhou Pu, Wang Xiaolin, Han Kai, Xu Xiaojun. 光纤激光相干合成高速高精度相位控制器[J]. High Power Laser and Particle Beams, 2012, 24(06): 1290-1294. doi: 10.3788/HPLPB20122406.1290
    [15]lu hui, zhang lijun, zheng zhanqi, zhang yiheng, leng yongqing, liao xianhua. Fiber-based vector-sum microwave photonic phase shifter[J]. High Power Laser and Particle Beams, 2011, 23(12): 12-13.
    [16]li xiao, sun hong, qiu yingwei, shen sirong, tang jingyu. Digital RF phase control loop at rapid cycling synchrotron of China spallation neutron source[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [17]wang bangji, liu qingxiang, zhang zhengquan, li xiangqiang, zhang jianqiong. Design of motor control system for mechanical phased array antenna[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [18]zhou lei, liu qingxiang, li xiangqiang, wang bangji, yu yi, zhang jianqiong, zhang yanrong, li hanbing. Design of stepping motor control IP core for array antenna successive scanning[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.0 %FULLTEXT: 19.0 %META: 77.1 %META: 77.1 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 1.1 %其他: 1.1 %Central District: 0.1 %Central District: 0.1 %China: 0.7 %China: 0.7 %European Union: 0.2 %European Union: 0.2 %France: 0.2 %France: 0.2 %India: 0.1 %India: 0.1 %Malaysia: 0.3 %Malaysia: 0.3 %Russian Federation: 0.1 %Russian Federation: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.6 %United States: 0.6 %[]: 1.1 %[]: 1.1 %三明: 0.1 %三明: 0.1 %上海: 1.6 %上海: 1.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %兰州: 0.1 %兰州: 0.1 %内江: 0.2 %内江: 0.2 %北京: 10.1 %北京: 10.1 %南京: 0.2 %南京: 0.2 %台北: 0.2 %台北: 0.2 %台州: 0.4 %台州: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈密: 0.2 %哈密: 0.2 %哈尔科夫: 0.5 %哈尔科夫: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %威海: 0.2 %威海: 0.2 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %宿迁: 0.2 %宿迁: 0.2 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %巴黎: 0.2 %巴黎: 0.2 %常州: 0.2 %常州: 0.2 %平顶山: 0.2 %平顶山: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %张家界: 0.1 %张家界: 0.1 %成都: 1.5 %成都: 1.5 %扬州: 0.1 %扬州: 0.1 %新乡: 0.7 %新乡: 0.7 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.5 %杭州: 1.5 %格兰特县: 0.2 %格兰特县: 0.2 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %淮安: 0.2 %淮安: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.8 %湖州: 0.8 %漯河: 0.4 %漯河: 0.4 %澳门: 0.1 %澳门: 0.1 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 20.1 %芒廷维尤: 20.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %衢州: 0.3 %衢州: 0.3 %西宁: 39.3 %西宁: 39.3 %西安: 0.4 %西安: 0.4 %西雅图: 0.1 %西雅图: 0.1 %贵港: 0.2 %贵港: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.1 %郑州: 2.1 %都柏林: 0.2 %都柏林: 0.2 %重庆: 0.2 %重庆: 0.2 %铜陵: 0.3 %铜陵: 0.3 %长沙: 0.9 %长沙: 0.9 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %其他其他Central DistrictChinaEuropean UnionFranceIndiaMalaysiaRussian FederationUnited KingdomUnited States[]三明上海中山临汾丹东丽水伊利诺伊州兰州内江北京南京台北台州呼和浩特咸阳哈密哈尔科夫哥伦布嘉兴大连天津威海安康宣城宿迁崇左巴中巴黎常州平顶山广州张家口张家界成都扬州新乡晋城普洱杭州格兰特县桃园武汉沈阳淮安深圳温州湖州漯河澳门玉林石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州衢州西宁西安西雅图贵港贵阳运城连云港邯郸郑州都柏林重庆铜陵长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (1219) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return