Shangguan Danhua, Deng Li, Li Gang, et al. A Shannon entropy-based strategy for adjusting history number of time-dependent transport problem automatically[J]. High Power Laser and Particle Beams, 2018, 30: 016004. doi: 10.11884/HPLPB201830.170250
Citation: Dong Pan, Li Jie, Zheng Le, et al. Surface morphology analysis of TiH cathode in vacuum arc discharge[J]. High Power Laser and Particle Beams, 2018, 30: 014001. doi: 10.11884/HPLPB201830.170356

Surface morphology analysis of TiH cathode in vacuum arc discharge

doi: 10.11884/HPLPB201830.170356
  • Received Date: 2017-09-06
  • Rev Recd Date: 2017-10-12
  • Publish Date: 2018-01-15
  • TiH alloy is a highly hydrogenated metal, which could be used as electrode of vacuum arc ion source and produces strong hydrogen ion current. TiH electrode surface has molten craters as the pure metal cathode does, and many pores form while hydrogen gas is released from the alloy. Hence TiH electrode surface has some special characteristics. This paper uses SEM to research the cathode surface appearances after single discharge and many times of discharges. The results are that the cathode spots are continuous distributions around the micro cracks, the gas pores make the surface look like cotton fiber, the numbers of cathode spots grow when the arc current grows, the spots move towards the place containing more hydrogen. These results are helpful to understand the progress of vacuum arc discharge with hydrogenated electrode, and to the applications of such morphology.
  • [1]
    MacGill R A, Dickinson M R, Brown I G. Vacuum arc ion sources: Micro to macro[J]. Rev Sci Instrum, 1996, 67(3): 1210-1212. doi: 10.1063/1.1146734
    [2]
    Ying J J, Xiao X H, Dai Z G, et al. Synthesis of graphene by MEVVA source ion implantation[J]. Nuclear Instruments and Methods in Physics Research B, 2013, 305: 29-32. doi: 10.1016/j.nimb.2013.04.044
    [3]
    米夏兹. 真空放电物理和高功率脉冲技术[M]. 北京: 国防工业出版社, 2007.

    Mesyats G A. Vacuum discharge physics and high power pulse technology. Beijing: National Defense Industry Press, 2007
    [4]
    Anders A. Cathodic arcs[M]. New York: Springer Science, 2008.
    [5]
    拉弗蒂J M. 真空电弧理论和应用[M]. 北京: 机械工业出版社, 1985.

    Lafferty J M. Vacuum arc theory and application. Beijing: China Machine Press, 1985
    [6]
    唐建, 卢彪, 伍春雷, 等. 条纹相机在真空弧离子源等离子体诊断中的应用[J]. 强激光与粒子束, 2015, 27: 084001. doi: 10.11884/HPLPB201527.084001

    Tang Jian, Lu Biao, Wu Chunlei, et al. Application of a streak camera to diagnosis of plasma in vacuum arc ion source. High Power Laser and Particle Beams, 2015, 27: 084001 doi: 10.11884/HPLPB201527.084001
    [7]
    Shkol'nik S M. Arc discharges with gas-impregnated cathodes in vacuum[J]. IEEE Trans Plasma Sci, 2001, 29(5): 675-683. https://ieeexplore.ieee.org/document/964453/
    [8]
    Barengolts S A, Karnaukhov D Y, Nikolaev A G, et al. Generation of hydrogen isotope ions in a vacuum arc discharge with a composite zirconium deuteride cathode[J]. Technical Physics, 2015, 60(7): 989-999. doi: 10.1134/S1063784215070051
    [9]
    陈磊, 金大志, 程亮, 等. 含氢电极脉冲放电等离子体特性诊断[J]. 强激光与粒子束, 2011, 23(5): 1361-1364. http://www.hplpb.com.cn/article/id/5198

    Chen Lei, Jin Dazhi, Cheng Liang, et al. Diagnosis of plasmas generated by pulsed vacuum arc discharge at hydrogen impregnated electrodes. High Power Laser and Particle Beams, 2011, 23(5): 1361-1364 http://www.hplpb.com.cn/article/id/5198
    [10]
    Brown I G. Vacuum arc ion sources[J]. Rev Sci Instrum, 1994, 65(10): 3061-3081. doi: 10.1063/1.1144756
    [11]
    Lan Chaohui, Long Jidong, Zheng Le, et al. Mode transition of vacuum arc discharge and its effect on ion current[J]. Chin Phys Lett, 2014, 31: 105202.
    [12]
    胡子龙. 贮氢材料[M]. 北京: 化学工业出版社, 2002.

    Hu Zilong. Hydrogen storage material. Beijing: Chemical Industry Press, 2002
  • Relative Articles

    [1]Zhang Hao, Zhao Feng, Lin Hanwen, Li Lei, Huang Liming, Wei Wei. Design of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37(5): 054001. doi: 10.11884/HPLPB202537.240365
    [2]Zhang Hao, Huang Liming, Zhao Feng, Lin Hanwen, Chang Renchao, Wei Jianping, E Dejun, Wei Wei, Tao Kai, Yang Jiayue, Zhang Weiqing. Design and thermal structure analysis of a dump beam window for high repetition frequency[J]. High Power Laser and Particle Beams, 2023, 35(3): 034001. doi: 10.11884/HPLPB202335.220350
    [3]Wang Guangyuan, Liu Lei, Liu Renhong, Kang Ling, Zhang Junsong, Ning Changjun, Yu Jiebing, Chen Jiaxin. Structure design and optimization analysis of proton beam window in target station for CSNS-II[J]. High Power Laser and Particle Beams, 2023, 35(12): 124005. doi: 10.11884/HPLPB202335.230176
    [4]Xu Qinglin, Zhang Jie, Liu Pingan, Yuan Jun. Transient response analysis method of shielded cable based on minimum phase method[J]. High Power Laser and Particle Beams, 2021, 33(12): 123004. doi: 10.11884/HPLPB202133.210177
    [5]Ou Weili, Zhang Zhengquan, Liu Qingxiang, Zhang Yaowen, Xi Jingyi, Jiang Dan. Circuit modeling and parameter design of LCC resonant converter[J]. High Power Laser and Particle Beams, 2019, 31(4): 040009. doi: 10.11884/HPLPB201931.180281
    [6]Zheng Qi, Wu Hongchun, Li Yunzhao, Cao Liangzhi, He Mingtao. Coupled stochastic-deterministic method for accelerator-driven subcritical system transient analysis[J]. High Power Laser and Particle Beams, 2018, 30(1): 016001. doi: 10.11884/HPLPB201830.170243
    [7]Yang Qingxi, Zhou Xing, Wang Qingguo, Yao Kai, Jiang Bo. Equivalent circuit model for transient analysis of lossy non-uniform transmission line network[J]. High Power Laser and Particle Beams, 2016, 28(11): 113201. doi: 10.11884/HPLPB201628.160154
    [8]Hu Chundong, Zhang Weitang, Xu Yongjian, Liu Sheng, Yu Ling. Analysis of shine-through of EAST neutral beam[J]. High Power Laser and Particle Beams, 2015, 27(12): 126001. doi: 10.11884/HPLPB201527.126001
    [9]Zhang Ning, Yang Yong, Leng Yongbin, Chen Zhichu, Yan Yingbing, Lai Longwei. Application of model independent analysis-based method to accelerator bunch-by-bunch research[J]. High Power Laser and Particle Beams, 2014, 26(03): 035103. doi: 10.3788/HPLPB201426.035103
    [10]Wu Hongli, Wang Xiangqi, Hu Guojun, Tang Jingyu, Shang Lei. Proton scattering effect and thermohydraulics study of proton beam window for C-ADS[J]. High Power Laser and Particle Beams, 2013, 25(10): 2675-2681. doi: 10.3788/HPLPB20132510.2675
    [11]Chen Yuanbo, Wang Junhua, Liu Zuping, Yang Yongliang, Zhou Zeran. Application of wavelet analysis in Hefei Light Source bunch-by-bunch system[J]. High Power Laser and Particle Beams, 2012, 24(05): 1155-1159. doi: 10.3788/HPLPB20122405.1155
    [12]chen guangyu, zhang xiaomin, zhao runchang, zheng wanguo, yang xiaoyu, you yong, wang chengcheng, shao yunfei. Synthetic methods for beam to beam power balancing capability of large laser facilities[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [13]meng cai, tang jingyu, jing hantao. Scattering effect in proton beam windows at spallation targets[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [14]sun yunqiang, xu xiaojun, xi fengjie, lu qisheng, wu wuming, guo shaofeng. Numerical analysis for anisoplanatic effect of steady thermal blooming[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [15]he xiaohai, lin libin, xiao dexin. Numerical simulation of windcooling electron beam extraction window[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- .
    [16]xu hong-liang, zhang jian-feng, huang gui-rong, sun bao-gen, li jue-xin, he duo-hui. Analysis of beam lifetime in Hefei storage ring[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [17]li jin-xi, cheng yin-hui, zhou hui, guo hong-xia. Responses of shielding cable to pulsed X-rays[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [18]zhou ping, guo shao feng, lu qi sheng, deng shao yong, wang jin bao, jiang hou man. Steadystate analysis of transverse SBS in optical materials[J]. High Power Laser and Particle Beams, 2004, 16(01): 0- .
    [19]chen xian-zhong, yao han-min, chen xu-nan. Application of metastable helium atomic beam in nanostructure fabrication[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- .
    [20]wang lin, xu hong liang, feng guang yao. Validity of coaxialwire method in impedance measurement[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- .
  • Cited by

    Periodical cited type(5)

    1. 袁显宝,刘曾豪,张彬航,张永红,唐海波,杨森权,肖云龙. 基于BEAVRS基准题的三维堆芯建模计算及不同均匀化方案比较分析. 核技术. 2024(01): 108-118 .
    2. 沈芷睿,孙启政,何东豪,潘清泉,张滕飞,彭良辉,杨伟焱. 基于BEAVRS基准题高保真建模的OpenMC程序和NECP-X程序的对比验证. 核技术. 2022(01): 73-81 .
    3. 秦凯文,杨波,刘义保,张洁茹,郝鹏飞,刘豪杰. BEAVRS堆芯k_(eff)的敏感性与不确定性分析. 核技术. 2022(02): 71-77 .
    4. 郝鹏飞,杨波,秦凯文,张洁茹,刘义保. 基于BEAVRS基准例题的OpenMC程序建模及计算验证. 能源研究与管理. 2021(04): 80-84+95 .
    5. 张新营,刘滨,付鹏,盛洁. 电子加速器驱动次临界系统的靶物理设计及耦合计算. 核科学与工程. 2021(05): 1047-1054 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.7 %FULLTEXT: 23.7 %META: 68.6 %META: 68.6 %PDF: 7.7 %PDF: 7.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %China: 0.3 %China: 0.3 %India: 0.1 %India: 0.1 %McLean: 0.1 %McLean: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.3 %[]: 0.3 %上海: 0.8 %上海: 0.8 %东莞: 0.3 %东莞: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %佛山: 0.1 %佛山: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 22.9 %北京: 22.9 %南宁: 0.1 %南宁: 0.1 %厦门: 0.1 %厦门: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.8 %合肥: 0.8 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %宣城: 0.2 %宣城: 0.2 %宿州: 0.1 %宿州: 0.1 %广州: 0.7 %广州: 0.7 %张家口: 2.6 %张家口: 2.6 %成都: 0.2 %成都: 0.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.3 %无锡: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %武汉: 0.3 %武汉: 0.3 %济南: 0.1 %济南: 0.1 %深圳: 0.8 %深圳: 0.8 %湖州: 0.5 %湖州: 0.5 %漯河: 0.2 %漯河: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 16.2 %芒廷维尤: 16.2 %衢州: 0.4 %衢州: 0.4 %西宁: 44.5 %西宁: 44.5 %西安: 0.1 %西安: 0.1 %赣州: 0.1 %赣州: 0.1 %运城: 0.3 %运城: 0.3 %郑州: 1.0 %郑州: 1.0 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaIndiaMcLeanUnited States[]上海东莞中山临汾丹东丽水佛山兰州北京南宁厦门台州合肥大连天津宣城宿州广州张家口成都扬州新乡无锡晋城普洱杭州武汉济南深圳湖州漯河秦皇岛芒廷维尤衢州西宁西安赣州运城郑州重庆长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (1452) PDF downloads(173) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return