Volume 30 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
Wu Qingzhou, Li Jin, Li Yuan, et al. Electric field analysis and optimization of the insulation system in gas-filled spark gap switch of Dragon-Ⅱ accelerator[J]. High Power Laser and Particle Beams, 2018, 30: 025001. doi: 10.11884/HPLPB201830.170370
Citation: Wu Qingzhou, Li Jin, Li Yuan, et al. Electric field analysis and optimization of the insulation system in gas-filled spark gap switch of Dragon-Ⅱ accelerator[J]. High Power Laser and Particle Beams, 2018, 30: 025001. doi: 10.11884/HPLPB201830.170370

Electric field analysis and optimization of the insulation system in gas-filled spark gap switch of Dragon-Ⅱ accelerator

doi: 10.11884/HPLPB201830.170370
  • Received Date: 2017-09-12
  • Rev Recd Date: 2017-10-23
  • Publish Date: 2018-02-15
  • In linear induction accelerator, Z-pinch and other large pulsed power devices, the gas-filled spark gap switches as key components are widely used. Unreasonable insulation system may bring excessively high partial electric field and accumulated charges to the gas-filled spark gap switch. The surface flashover would occur while the gas-filled spark gap switches are working under long time or high frequency high voltage pulse. The surface flashover will directly affect the pulsed power devices. Hence, we discussed the mechanism of accumulated charge influence on surface flashover by finite-element electric-field analysis of gas-filled spark gap switch insulation system. The surface electric field strength of insulator and electrodes were reduced by optimizing the structure of insulator and shapes of electrode surface. The results show that: the electric field strength in anode triple junction was decreased from 9.4 kV/mm to 1.5 kV/mm, the electric field strength in cathode triple junction was decreased from 2.95 kV/mm to 0.98 kV/mm, the maximum electric field strength in insulator surface was decreased from 10.8 kV/mm to 4.95 kV/mm. The electric field distribution of optimized insulation system was more reasonable than that of original system, and the probability of surface flashover resulted by accumulated charges would be reduced.
  • loading
  • [1]
    黎斌. SF6高压电器设计[M]. 3版. 北京: 机械工业出版社, 2009: 79-86.

    Li Bin. Design of SF6 high voltage apparatus. 3rd ed. Beijing: China Machine Press, 2009: 79-86
    [2]
    布鲁姆. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008: 67-82.

    Bluhm H. Pulsed power system: principles and applications. Jiang Weihua, Zhang Chi, translated. Beijing: Tsinghua University Press, 2008: 67-82
    [3]
    丁伯南, 邓建军, 王华岑, 等. "神龙一号"直线感应电子加速器[J]. 高能物理与核物理, 2005, 29(6): 604-610. doi: 10.3321/j.issn:0254-3052.2005.06.015

    Ding Bonan, Deng Jianjun, Wang Huacen, et al. Dragon-Ⅰlinear induction electron accelerator. High Energy Physics and Nuclear Physics, 2005, 29(6): 604-610 doi: 10.3321/j.issn:0254-3052.2005.06.015
    [4]
    邓建军. 直线感应电子加速器[M]. 北京: 国防工业出版社, 2006: 145-193.

    Deng Jianjun. Linear induction electron accelerator. Beijing: National Defense Industry Press, 2006: 145-193
    [5]
    石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28: 010201. doi: 10.11884/HPLPB201628.010201

    Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-Ⅱaccelerator and its key technology. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201
    [6]
    王虎, 常家森, 陶风波, 等. 脉冲气体开关用SF6混合气体放电特性的研究[J]. 高压电器, 2011, 47(1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201101013.htm

    Wang Hu, Chang Jiasen, Tao Fengbo, et al. Investigation on discharge characteristics of SF6 gas mixtures used in pulsed gas spark switch. High Voltage Apparatus, 2011, 47(1): 49-52 https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201101013.htm
    [7]
    Brian T, Scott D, Dustin L. Effects of laser triggering parameters on runtime and jitter of a gas switch[J]. IEEE Trans Electrical Insulation, 2009, 16(4): 999-1005. doi: 10.1109/TDEI.2009.5211846
    [8]
    魏浩, 孙凤举, 刘鹏, 等. ±100 kV三电极场畸变气体火花开关[J]. 强激光与粒子束, 2012, 24(4): 881-884. doi: 10.3788/HPLPB20122404.0881

    Wei Hao, Sun Fengju, Liu Peng, et al. Three-electrode field-distortion gas spark switch. High Power Laser and Particle Beams, 2012, 24(4): 881-884 doi: 10.3788/HPLPB20122404.0881
    [9]
    Sudarshan T, Dougal R. Mechanisms of surface flashover along solid dielectrics in compressed gases: a review[J]. IEEE Trans Electrical Insulation, 1986, 21(5): 727-746.
    [10]
    Srivastava K, Zhou Jianping. Surface charging and flashover of spacers in SF6 under impulse voltages[J]. IEEE Trans Electrical Insulation, 1991, 26(3): 428-442. doi: 10.1109/14.85114
    [11]
    John T, Andreas A, Hermann G. Pulsed dielectric-surface flashover in an SF6 environment[J]. IEEE Trans Dielectric and Electrical Insulation, 2007, 35(5): 1580-1587.
    [12]
    李乃一, 彭宗仁, 刘鹏. 特高压SF6气体绝缘套管内屏蔽结构研究[J]. 高电压技术, 2015, 41(11): 3737-3745. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201511034.htm

    Li Naiyi, Peng Zongren, Liu Peng. Investigation of inner shielding structure for ultra-high voltage SF6 gas-insulated bushing. High Voltage Engineering, 2015, 41(11): 3737-3745 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201511034.htm
    [13]
    Martin T, Guenther A, Kristiansen M J C. Martin on pulsed power[M]. New York: Plenum Press, 1996: 135-176.
    [14]
    Mansour D-E A, Kojima H, Hayakawa N. Surface charge accumulation and partial discharge activity for small gaps of Electrode/Epoxy interface in SF6 gas[J]. IEEE Trans Dielectric and Electrical Insulation, 2009, 16(4): 1150-1157. doi: 10.1109/TDEI.2009.5211869
    [15]
    Du B, Zhang J, Gao Y. Effect of nanosecond rise time of pulse voltage on the surface charge of epoxy/TiO2 nanocomposites[J]. IEEE Trans Dielectric and Electrical Insulation, 2013, 20(1): 321-328.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (956) PDF downloads(202) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return