Zhang Manzhou, Wang Kun, Zhang Qinglei, et al. Compensations of double elliptical polarization undulator effects on the SSRF storage ring[J]. High Power Laser and Particle Beams, 2017, 29: 075103. doi: 10.11884/HPLPB201729.170014
Citation: Wei Zhengtong, Hou Deting, Miao Jingsong, et al. Precise control of optical microfiber diameter[J]. High Power Laser and Particle Beams, 2018, 30: 074104. doi: 10.11884/HPLPB201830.170403

Precise control of optical microfiber diameter

doi: 10.11884/HPLPB201830.170403
  • Received Date: 2017-10-19
  • Rev Recd Date: 2018-03-05
  • Publish Date: 2018-07-15
  • To monitor the environment in high peak laser system inline, the method to sense containments by using optical microfiber(OM) was proposed. To realize precise control of the OM diameter, we firstly analyzed the OM fabrication process, obtained the relationship between the deviation of the OM shape and the errors of heating length and stretching length, then simulated the deviation in different situation, finally got the optimal parameter to fabricate OM with the length of 10 mm and the diameter of 1.5 μm. We have proved the simulation results by measuring the shape of the drawn OMs. According to our research, precise control of OM shape can be achieved by tuning the OM fabrication parameters, and the results lay the foundation for practical application of OM contaminants sensor.
  • [1]
    Neauport J, Cormont P, Lamaignère L, et al. Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm[J]. Optics Communication, 2008, 281: 3802-3805. doi: 10.1016/j.optcom.2008.03.031
    [2]
    Bien-Aimé K, Belin C, Gallais L, et al. Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm[J]. Optics Express, 2009, 17(21): 18703-18713. doi: 10.1364/OE.17.018703
    [3]
    於海武, 郑万国, 唐军, 等. 高功率激光放大器片腔洁净度实验研究[J]. 强激光与粒子束, 2001, 13(3): 272-276. http://www.hplpb.com.cn/article/id/235

    Yu Haiwu, Zheng Wanguo, Tang Jun, et al. Investigation of slab cavity cleanliness of high power laser amplifiers. High Power Laser and Particle Beams, 2001, 13(3): 272-276 http://www.hplpb.com.cn/article/id/235
    [4]
    程晓锋, 苗心向, 王洪彬, 等. 神光-Ⅲ主机激光装置片状放大器洁净控制进展[J]. 强激光与粒子束, 2012, 24(1): 1-2. http://www.hplpb.com.cn/article/id/5799

    Cheng Xiaofeng, Miao Xinxiang, Wang Hongbin, et al. Development on cleanliness control of slab amplifiers for Shenguang-Ⅲ laser driver. High Power Laser and Particle Beams, 2012, 24(1): 1-2 http://www.hplpb.com.cn/article/id/5799
    [5]
    Larsson E M, Malin E, Edvardsson M, et al. A combined nanoplasmonic and electrodeless quartz crystal microbalance setup[J]. Review of Scientific Instruments, 2009, 80: 125105. doi: 10.1063/1.3265321
    [6]
    苗心向, 袁晓东, 吕海兵, 等. 基于微纳光纤的气溶胶探测应用技术[J]. 强激光与粒子束, 2014, 26: 114103. doi: 10.11884/HPLPB201426.114103

    Miao Xinxiang, Yuan Xiaodong, Lü Haibin, et al. Contamination particles sensor based on microfiber. High Power Laser and Particle Beams, 2014, 26: 114103 doi: 10.11884/HPLPB201426.114103
    [7]
    Wei Zhengtong, Song Zhangqi, Zhang Xueliang, et al. Microparticle detection based on optical microfibers[J]. IEEE Photonics Technology Letters, 2013, 25(6): 568-571. doi: 10.1109/LPT.2013.2241422
    [8]
    Wei Zhengtong, Song Zhangqi, Yu Yang, et al. Inline contaminants detection with optical microfiber in high-power laser system[C]//Proc of SPIE. 2013, 8911: 891104.
    [9]
    Gilberto Brambilla. Optical fibre nanowires and microwires: a review[J]. Journal of Optics, 2010, 12: 043001. doi: 10.1088/2040-8978/12/4/043001
    [10]
    Xu Fei, Gilberto Brambilla, Feng Jing, et al. A microfiber Bragg grating based on a microstructured rod: a proposal[J]. IEEE Photonics Technology Letters, 2010, 22(4): 218-220. doi: 10.1109/LPT.2009.2037515
    [11]
    Zhang Lei, Gu Fuxing, Lou Jingyi, et al. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film[J]. Optics Express, 2008, 16(17): 13349-13353. doi: 10.1364/OE.16.013349
    [12]
    Wei Zhengtong, Song Zhangqi, Song Rui, et al. Measurement of the optical absorption coefficient for liquid based on optical microfiber[J]. Optik, 2014, 125(12): 2880-2884. doi: 10.1016/j.ijleo.2013.11.048
    [13]
    Wei Zhengtong, Song Zhangqi, Zhang Xueliang, et al. In-line fluidic absorption coefficient sensor based on optical microfiber[C]//Proc of SPIE. 2012, 8421: 842183.
    [14]
    Birks T A, Li Youwei. The shape of fiber tapers[J]. Journal of Lightwave Technology, 1992, 10(4): 432-438. doi: 10.1109/50.134196
  • Relative Articles

    [1]Li Bo, Li Yanmin, Zhao Juan, Li Hongtao, Ma Liehua, Ai Jie, Wang Cheng, Zhang Botao, Peng Xusheng, Li Tao. Design of the hardware automatic detection and control circuit for scintillation detectors[J]. High Power Laser and Particle Beams, 2025, 37(3): 015011. doi: 10.11884/HPLPB202537.240302
    [2]Zheng Xinzhi, Dou Shiji, Liu Xiang, Zhao Chenxi, Zhao Shilong, Yang Yue, Wang Shaoyi, Zhao Zongqing, Ma Yujie. Simulation of light field regulation based on micro-nano structure and material properties[J]. High Power Laser and Particle Beams, 2024, 36(3): 031002. doi: 10.11884/HPLPB202436.230453
    [3]Zhang Shulin, Zhu Guoli, Dong Guangyan. All-fiber mode-locked laser using platinum film-coated microfiber[J]. High Power Laser and Particle Beams, 2023, 35(3): 031002. doi: 10.11884/HPLPB202335.220263
    [4]Chen Yu, Guo Jielin, Zhong Hui, Sun Guanshu, Chen Zhiqiang, Jia Wei. Detection and location method of nanosecond pulse discharge ultraviolet fiber array[J]. High Power Laser and Particle Beams, 2021, 33(11): 115001. doi: 10.11884/HPLPB202133.210226
    [5]Hu Yun, Zhang Jiyan, Jiang Shaoen, Wang Zhebin, Pu Yudong. Experiment study of extended X-ray absorption fine structure spectrum on SG-III prototype facility[J]. High Power Laser and Particle Beams, 2020, 32(5): 052002. doi: 10.11884/HPLPB202032.200022
    [6]Wu Ya'nan, Mao Huafeng, Shen Xianshun, Li Jun, Lu Jing, Mao Zhiwei. Assessment method of thyristor controlled reactor dynamic response time based on trigger detection[J]. High Power Laser and Particle Beams, 2019, 31(5): 056001. doi: 10.11884/HPLPB201931.180362
    [7]Mo Jun, Feng Guoying, Liao Yu, Yang Mochou, Zhou Shouhuan. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30(8): 081003. doi: 10.11884/HPLPB201830.180079
    [8]Fang Yu, Li Zefu, Luo Xuan, Chen Shufan, Huang Chuanqun, Zhang Qingjun. Microstructure controlling of low density PMP foam films[J]. High Power Laser and Particle Beams, 2014, 26(02): 022020. doi: 10.3788/HPLPB201426.022020
    [9]Liu Yong, Cheng Xiaofeng, Xu Jianqiu, Mu Quanquan, Wang Haiping. Effective cleanliness in large laser contaminants control[J]. High Power Laser and Particle Beams, 2014, 26(11): 111010. doi: 10.11884/HPLPB201426.111010
    [10]Miao Xinxiang, Yuan Xiaodong, Lv Haibing, Cheng Xiaofeng, Wei Zhengtong, Zhou Guorui. Contamination particles sensor based on microfiber[J]. High Power Laser and Particle Beams, 2014, 26(11): 114103. doi: 10.11884/HPLPB201426.114103
    [11]Cheng Xiaofeng, Wang Hongbin, Miao Xinxiang, Qin Lang, Ye Yayun, Chen Yuanbin, Lv Haibing, Xiong Qian, He Qun, Ma Zhiqiang, Zhao Longbiao, Liu Yong, He Shaobo, Yuan Xiaodong, Zhu Qihua, Jing Feng, Zheng Wanguo. Contamination control for high-power solid-state laser driver and improvement of cleanliness in slab amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(05): 1147-1151. doi: 10.3788/HPLPB20132505.1147
    [12]Li Feifei, Wu Jin, Zhao ZhiLong, Wang DongLei, Ye Zhengyu, Yu Yanming. Air coupled vibration detection of all-fiber laser Doppler vibrometer[J]. High Power Laser and Particle Beams, 2012, 24(11): 2549-2554. doi: 10.3788/HPLPB20122411.2549
    [13]Li Jianyi, Xiao Wen, Pan Feng, Cong Lin, Wang Fanjing. Real-time micro-vibration testing based on digital holographic interferometry[J]. High Power Laser and Particle Beams, 2012, 24(10): 2291-2295. doi: 10.3788/HPLPB20122410.2291
    [14]zhang li, liu guodong, wang guibing. Influence of optical window shape on aero-optic effects[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [15]zhang jun-wei, zhou hai, zhou yi, feng bin, wang shi-long, lin dong-hui, jing feng. Structure stability index allocation theory and measurement of laser prototype facility[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [16]chen zhe-min, chen jun, sheng fang, chen guang-miao. 1 Hz~25 kHz repetition rate controllable microchip laser[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [17]mu zhi-dong, wei qi-ying, ye shi-wang, zhang lei, wei wei, wang shu-kai. Extended analysis of fine-structure energy levels of 4s24p3 and 4s4p4 for ions from PdXIV to Cd XVI[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]wang xiao-dong, jiang ren-bin, zhang jun-, wang wan-jue, jiang xiao-feng, shen yi-fan. Fine-structure energy levels and radiation lifetime in Mglike ions Mn XIV and Zn XIX[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- .
    [19]li guang-wu, ma hong-liang, li mao-sheng, zhang xue-mei, lu fu-quan, peng xian-jue, yang fu-jia. Hyperfine structure spectrum measurement for 159TbII[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 彭政伟,张胜海,苗劲松,陈文博,于洋,卫正统. 微纳光纤直径测试技术研究. 激光技术. 2021(05): 596-600 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.3 %FULLTEXT: 20.3 %META: 78.7 %META: 78.7 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.2 %[]: 0.2 %上海: 1.6 %上海: 1.6 %上饶: 0.1 %上饶: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 22.3 %北京: 22.3 %十堰: 0.1 %十堰: 0.1 %南京: 0.5 %南京: 0.5 %厦门: 0.1 %厦门: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.1 %合肥: 0.1 %吉隆坡: 0.1 %吉隆坡: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.1 %天津: 0.1 %威海: 0.1 %威海: 0.1 %宣城: 0.1 %宣城: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.4 %张家口: 0.4 %扬州: 0.2 %扬州: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.4 %杭州: 1.4 %武汉: 0.2 %武汉: 0.2 %法尔肯施泰因: 0.1 %法尔肯施泰因: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.4 %芝加哥: 0.4 %衢州: 0.2 %衢州: 0.2 %西宁: 44.9 %西宁: 44.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %通辽: 0.1 %通辽: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阿什本: 0.3 %阿什本: 0.3 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %其他ChinaIndiaTaiwan, ChinaUnited States[]上海上饶中山临汾丹东伊利诺伊州兰州北京十堰南京厦门台州合肥吉隆坡呼和浩特哥伦布唐山嘉兴天津威海宣城布鲁塞尔常州广州张家口扬州晋城普洱杭州武汉法尔肯施泰因洛阳深圳温州湖州漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥衢州西宁西安贵阳运城通辽邯郸郑州长沙长治阿什本香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (1873) PDF downloads(143) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return