Zhang Xuehai, Wei Heli, Dai Congming, et al. A Study of scattering properties of fly ash aerosols: comparison of laboratory and Lorenz-Mie results[J]. High Power Laser and Particle Beams, 2015, 27: 071004. doi: 10.11884/HPLPB201527.071004
Citation: Zhang Qi, Zheng Shuxin, Li Guangrui, et al. Influence of dipole and quadrupole power ripple on slow extraction for XIPAF[J]. High Power Laser and Particle Beams, 2018, 30: 085101. doi: 10.11884/HPLPB201830.170438

Influence of dipole and quadrupole power ripple on slow extraction for XIPAF

doi: 10.11884/HPLPB201830.170438
  • Received Date: 2017-11-06
  • Rev Recd Date: 2018-04-19
  • Publish Date: 2018-08-15
  • The third resonant slow extraction and RF-knockout technology was adopted for Xi'an Proton Application Facility (XIPAF), which was designed for proton single event effects research.The influence of dipole and quadrupole power ripple on extracted spill was explored theoretically and simulated via TrackAll.According to a series of simulation results, ΔI/Iset≤1.2×10-4 for the quadrupole-focusing power converter, ΔI/Iset≤2×10-3 for the quadrupole defocusing converter andΔI/Iset≤4×10-4 for the dipole converter are acceptable, whereΔI represents the variance of the ouput current caused by power ripple and Iset represents the standard value of the output current without ripple.Since the synchrotron's power converters in XIPAF satisfy the same standard in terms of power ripple, it is confirmed thatΔI/Isetshould be limited to 1×10-4 for all power converters.
  • [1]
    Zheng Shuxin, Xing Qingzi, Guan Xialing, et al. Design of the 230 MeV proton accelerator for Xi'an Proton Application Facility[C]//Proceedings of HB. 2016: 55-58.
    [2]
    Noda K, Kanazawa M, Itano A, et al. Slow beam extraction by a transverse RF field with AM and FM[J]. Nuclear Instruments and Methods in Physics Research Section A, 1996, 374(2): 269-277.
    [3]
    李光锐. TrackAll——一套质子同步加速器束流动力学模拟框架[C]//第二届全国辐射物理学术交流会. 2016.

    Li Guangrui. TrackAll——A framework for simulation on beam dynamics of synchrotron[C]//Proc of CRPS. 2016
    [4]
    Noda K, Furukawa T, Shibuya S, et al. Advanced RF-KO slow-extraction method for the reduction of spill ripple[J]. Nuclear Instruments & Methods in Physics Research A, 2002, 492(1/2): 253-263.
    [5]
    Furukawa T, Noda K, Muramatsu M, et al. Global spill control in RF-knockout slow-extraction[J]. Nuclear Instruments & Methods in Physics Research A, 2004, 522(3): 196-204.
    [6]
    Badano L, Crescenti M, Holy P, et al. Proton-ion medical machine study (PIMMS), 1[R]. CERN-PS-99-010-DI, 1999.
    [7]
    Lee S Y. Accelerator physics[M]. Shanghai: Fudan University Press, 2006.
  • Relative Articles

    [1]Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320
    [2]Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, Wang Tao, Zhang Tianxiong, Rao Daxing, Liu Dong, Cui Yong, Ji Lailin, Shi Haitao, Feng Wei, Sui Zhan. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34(3): 031012. doi: 10.11884/HPLPB202234.210267
    [3]Hou Chunyuan, Rao Daxing, Li Fujian, Zheng Quan, Gao Yanqi, Cui Yong, Zhao Xiaohui, He Ruijing, Sui Zhan, Xiang Xia. Single-shot measurement method of temporal coherence for low-coherence broadband light[J]. High Power Laser and Particle Beams, 2021, 33(7): 071005. doi: 10.11884/HPLPB202133.210027
    [4]Gao Yanqi, Ji Lailin, Cui Yong, Rao Daxing, Zhao Xiaohui, Feng Wei, Xia Lan, Liu Dong, Wang Tao, Shi Haitao, Li Fujian, Liu Jia, Du Pengyuan, Li Xiaoli, Liu Jiani, Zhang Tianxiong, Shan Chong, Ma Weixin, Sui Zhan, Fu Sizu. kJ low-coherence broadband Nd:glass laser driver facility[J]. High Power Laser and Particle Beams, 2020, 32(1): 011004. doi: 10.11884/HPLPB202032.190427
    [5]Wei Xiaofeng, Li Ping. Beam coherence and control of laser fusion driver: Retrospect and prospect[J]. High Power Laser and Particle Beams, 2020, 32(12): 121007. doi: 10.11884/HPLPB202032.200203
    [6]Yu Shijie, Long Minhui, Lu Fang, Han Xiang’e. Experiment of partially coherent and coherent light propagating through a turbulence emulator[J]. High Power Laser and Particle Beams, 2015, 27(01): 011002. doi: 10.11884/HPLPB201527.011002
    [7]Kang Dongguo, Li Meng, Gao Yaoming. Radiation pulse shaping for laser indirect-drive central ignition target[J]. High Power Laser and Particle Beams, 2013, 25(01): 57-61. doi: 10.3788/HPLPB20132501.0057
    [8]Zou Shengwu, Zhang Tongyi. Spatiotemporal shaping of terahertz pulses using conductive apertures of finite thickness[J]. High Power Laser and Particle Beams, 2013, 25(05): 1325-1331. doi: 10.3788/HPLPB20132505.1325
    [9]Zhang Hui, Hou Deting, Li Xia. Coherent control of non-resonant two-photon transition in intense laser field[J]. High Power Laser and Particle Beams, 2013, 25(11): 2861-2864. doi: 10.3788/HPLPB20132511.2861
    [10]xu yan, wan yongjian, wu yongqian. Ring source technology based on spatial coherence control[J]. High Power Laser and Particle Beams, 2011, 23(12): 18-19.
    [11]chen guangming, lin huichuan, pu jixiong. Generation of bottle beam by modulating spatial coherence of light beam[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [12]yang yuchuan, luo hui, jing feng, li fuquan, wang xiao, huang xiaojun, feng bin. Effect of temporal partial coherence of flat-topped Gauss ultrashort-pulse lasers on coherent combination[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [13]zheng huan, wang anting, xu lixin, ming hai. Frequencies of intensity fluctuation in linearly chirped Gaussian pulse stacking[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [14]wang feng-rui, zhang ying, zhu qi-hua, xie xu-dong, wang xiao, zeng xiao-ming, huang xiao-jun, sun li, guo yi, deng wu, huang zheng. Theoretical study of spectral shaping by liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [15]zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [16]wang shuang-yi, lu zhi-wei, lin dian-yang, wang chao, gao hong-yan, dong yong-kang. KrF laser pulse shaping by pulse stacking[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [17]wan min, zhang wei, xiang ru-jian, yang rui. Influence of laser spatial coherence on illumination uniformity[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [18]xie yong-jie, zhao xue-qing, wamng li-jun, liu jing-ru, yuan xiao. The experimental study of partially coherence light source produced by liquid crystal[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(2)

    1. 张学海,戴聪明,张鑫,魏合理,朱希娟,马静. 相对湿度和粒子形态对海盐气溶胶粒子散射特性的影响. 红外与激光工程. 2019(08): 253-260 .
    2. 李树旺,邵士勇,梅海平,饶瑞中. 气溶胶吸收的光热干涉相位载波算法. 强激光与粒子束. 2016(04): 12-16 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.2 %FULLTEXT: 14.2 %META: 78.8 %META: 78.8 %PDF: 7.0 %PDF: 7.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.1 %其他: 0.1 %China: 0.3 %China: 0.3 %United States: 0.1 %United States: 0.1 %上海: 1.2 %上海: 1.2 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊斯兰堡: 0.4 %伊斯兰堡: 0.4 %保定: 0.3 %保定: 0.3 %北京: 2.9 %北京: 2.9 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 1.6 %台州: 1.6 %合肥: 0.6 %合肥: 0.6 %周口: 0.1 %周口: 0.1 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 1.5 %哈尔科夫: 1.5 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.6 %大连: 0.6 %天津: 0.1 %天津: 0.1 %娄底: 0.1 %娄底: 0.1 %安德森: 0.4 %安德森: 0.4 %宜昌: 0.4 %宜昌: 0.4 %常州: 0.1 %常州: 0.1 %常德: 0.4 %常德: 0.4 %广州: 0.3 %广州: 0.3 %廊坊: 0.3 %廊坊: 0.3 %张家口: 1.7 %张家口: 1.7 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %德阳: 0.1 %德阳: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 1.0 %成都: 1.0 %拉帕汉诺克县: 0.1 %拉帕汉诺克县: 0.1 %新加坡: 0.4 %新加坡: 0.4 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普赖恩维尔: 0.1 %普赖恩维尔: 0.1 %杭州: 1.0 %杭州: 1.0 %梧州: 0.1 %梧州: 0.1 %武汉: 0.4 %武汉: 0.4 %沃思堡: 0.9 %沃思堡: 0.9 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %淄博: 1.7 %淄博: 1.7 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 0.6 %湖州: 0.6 %漯河: 0.9 %漯河: 0.9 %烟台: 0.1 %烟台: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.7 %石家庄: 0.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 42.2 %芒廷维尤: 42.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %荆州: 0.1 %荆州: 0.1 %衢州: 0.4 %衢州: 0.4 %西宁: 13.2 %西宁: 13.2 %西安: 0.6 %西安: 0.6 %诺沃克: 4.1 %诺沃克: 4.1 %贵阳: 1.0 %贵阳: 1.0 %运城: 1.6 %运城: 1.6 %遵义: 0.4 %遵义: 0.4 %郑州: 0.6 %郑州: 0.6 %重庆: 0.3 %重庆: 0.3 %长沙: 1.6 %长沙: 1.6 %青岛: 0.7 %青岛: 0.7 %其他其他ChinaUnited States上海东莞临汾丹东伊斯兰堡保定北京南京南通台州合肥周口哈密哈尔滨哈尔科夫嘉兴大连天津娄底安德森宜昌常州常德广州廊坊张家口张家界徐州德阳惠州成都拉帕汉诺克县新加坡昆明晋城普赖恩维尔杭州梧州武汉沃思堡沈阳洛阳济南淄博深圳温州湖州漯河烟台班加罗尔石家庄秦皇岛绵阳芒廷维尤芝加哥苏州荆州衢州西宁西安诺沃克贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (1190) PDF downloads(87) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return