Citation: | Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002. doi: 10.11884/HPLPB201830.170440 |
[1] |
Li Y, Mu B, Xie Q, et al. Development of an X-ray eight-image Kirkpatrick-Baez diagnostic system for China's laser fusion facility[J]. Appl Opt, 2017, 56(12): 3311-3318. doi: 10.1364/AO.56.003311
|
[2] |
Xie Q, Mu B, Li Y, et al. Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-Ⅲ facility[J]. Opt Express, 2017, 25(3): 2608-2617. doi: 10.1364/OE.25.002608
|
[3] |
穆宝忠, 伊圣振, 黄圣铃, 等. ICF用Kirkpatrick-Baez型显微镜光学设计[J]. 强激光与粒子束, 2008, 20(3): 409-412. http://www.hplpb.com.cn/article/id/3249
Mu Baozhong, Yi Shengzhen, Huang Shengling, et al. Optical design of Kirkpatrick-Baez microscope for ICF. High Power Laser and Particle Beams, 2008, 20(3): 409-412 http://www.hplpb.com.cn/article/id/3249
|
[4] |
Wolter H. Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen[J]. Ann Phys, 1952, 445(1/2): 94-114.
|
[5] |
王风丽, 王占山, 张众, 等. X射线天文望远镜的进展[J]. 物理, 2005, 34(3): 214-220. doi: 10.3321/j.issn:0379-4148.2005.03.013
Wang Fengli, Wang Zhanshan, Zhang Zhong, et al. The development of X-ray astronomical telescopes. Physics, 2005, 34(3): 214-220 doi: 10.3321/j.issn:0379-4148.2005.03.013
|
[6] |
Chase R C, Silk J K. Ellipsoid-hyperboloid X-ray imaging instrument for laser-pellet diagnostics[J]. Appl Opt, 1975, 14(9): 2096-2098. doi: 10.1364/AO.14.002096
|
[7] |
Boyle M J, Ahlstrom H G. Imaging characteristics of an axisymmetric, grazing incidence X-ray microscope designed for laser fusion research[J]. Rev Sci Instrum, 1978, 49(6): 746-751. doi: 10.1063/1.1135605
|
[8] |
Remington B A, Haan S W, Glendinning S G, et al. Large growth Rayleigh-Taylor experiments using shaped laser pulses[J]. Phys Rev Lett, 1991, 67(23): 3259-3262. doi: 10.1103/PhysRevLett.67.3259
|
[9] |
Remington B A, Glendinning S G, Wallace R J, et al. Wölter X-ray microscope characterization measurements on Nova[J]. Rev Sci Instrum, 1992, 63(10): 5080-5082. doi: 10.1063/1.1143498
|
[10] |
Remington B A, Weber S V, Marinak M M, et al. Single-mode and multimode Rayleigh-Taylor experiments on Nova[J]. Phys Plasmas, 1995, 2(1): 241-255. doi: 10.1063/1.871096
|
[11] |
Kirkpatrick P, Baez A V. Formation of optical images by X-rays[J]. J Opt Soc Am, 1948, 38(9): 766-774. doi: 10.1364/JOSA.38.000766
|
[12] |
Chon K S, Namba Y, Yoon K. Optimization of a Wolter type Ⅰ mirror for a soft X-ray microscope[J]. Prec Eng, 2006, 30(2): 223-230. doi: 10.1016/j.precisioneng.2005.09.002
|
[13] |
Chon K S, Namba Y, Yoon K H. Precision machining of electroless nickel mandrel and fabrication of replicated mirrors for a soft X-ray microscope[J]. JSME International Journal Series C, 2006, 49(1): 56-62. doi: 10.1299/jsmec.49.56
|
[14] |
Ninomiya K, Honda K, Aoki S, et al. Fabrication of an axisymmetric wolter type Ⅰ mirror with a gold deposited reflecting surface[J]. Jpn J Appl Phys, 1989, 28(11): 2303-2308.
|
[15] |
Yamauchi K, Mimura H, Inagaki K, et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining[J]. Rev Sci Instrum, 2002, 73(11): 4028-4033. doi: 10.1063/1.1510573
|
[16] |
Mori Y, Yamauchi K, Endo K. Mechanism of atomic removal in elastic emission machining[J]. Prec Eng, 1988, 10(1): 24-28. doi: 10.1016/0141-6359(88)90091-8
|