Wu Jinghao, Liu Qingxiang, Zhang Zhengquan, et al. Application of dual synchronous coordinate phase-locked loop in AC-link charging power supply[J]. High Power Laser and Particle Beams, 2018, 30: 053006. doi: 10.11884/HPLPB201830.170459
Citation: Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002. doi: 10.11884/HPLPB201830.170440

Optical design of Wolter X-ray microscope for laser plasma diagnostics

doi: 10.11884/HPLPB201830.170440
  • Received Date: 2017-11-02
  • Rev Recd Date: 2018-03-01
  • Publish Date: 2018-06-15
  • Based on the urgent need of conducting imaging diagnostics of dense laser-produced plasma, we present the optical system design of Wolter type X-ray microscope based on Abbe's sine condition. This paper details the structural features and optical design approaches of Wolter microscope. The impacts of initial structure parameters including the object distance, magnification, grazing angle and mirror length of hyperbolic mirror on objective performance are studied quantitatively. According to ray-tracing simulation, the spatial resolution is better than 1 μm in a range of ±260 μm and better than 3 μm in a range of ±460 μm. The effective field of view is estimated as about 1 mm in diameter with a geometric solid angle of 6.1×10-5 sr. The system is flat-response with an efficiency consistency of 93.7% over the field of view. This paper contributes to the development of high-resolution and high-flux hard X-ray imaging diagnostic instruments in the future.
  • [1]
    Li Y, Mu B, Xie Q, et al. Development of an X-ray eight-image Kirkpatrick-Baez diagnostic system for China's laser fusion facility[J]. Appl Opt, 2017, 56(12): 3311-3318. doi: 10.1364/AO.56.003311
    [2]
    Xie Q, Mu B, Li Y, et al. Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-Ⅲ facility[J]. Opt Express, 2017, 25(3): 2608-2617. doi: 10.1364/OE.25.002608
    [3]
    穆宝忠, 伊圣振, 黄圣铃, 等. ICF用Kirkpatrick-Baez型显微镜光学设计[J]. 强激光与粒子束, 2008, 20(3): 409-412. http://www.hplpb.com.cn/article/id/3249

    Mu Baozhong, Yi Shengzhen, Huang Shengling, et al. Optical design of Kirkpatrick-Baez microscope for ICF. High Power Laser and Particle Beams, 2008, 20(3): 409-412 http://www.hplpb.com.cn/article/id/3249
    [4]
    Wolter H. Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen[J]. Ann Phys, 1952, 445(1/2): 94-114.
    [5]
    王风丽, 王占山, 张众, 等. X射线天文望远镜的进展[J]. 物理, 2005, 34(3): 214-220. doi: 10.3321/j.issn:0379-4148.2005.03.013

    Wang Fengli, Wang Zhanshan, Zhang Zhong, et al. The development of X-ray astronomical telescopes. Physics, 2005, 34(3): 214-220 doi: 10.3321/j.issn:0379-4148.2005.03.013
    [6]
    Chase R C, Silk J K. Ellipsoid-hyperboloid X-ray imaging instrument for laser-pellet diagnostics[J]. Appl Opt, 1975, 14(9): 2096-2098. doi: 10.1364/AO.14.002096
    [7]
    Boyle M J, Ahlstrom H G. Imaging characteristics of an axisymmetric, grazing incidence X-ray microscope designed for laser fusion research[J]. Rev Sci Instrum, 1978, 49(6): 746-751. doi: 10.1063/1.1135605
    [8]
    Remington B A, Haan S W, Glendinning S G, et al. Large growth Rayleigh-Taylor experiments using shaped laser pulses[J]. Phys Rev Lett, 1991, 67(23): 3259-3262. doi: 10.1103/PhysRevLett.67.3259
    [9]
    Remington B A, Glendinning S G, Wallace R J, et al. Wölter X-ray microscope characterization measurements on Nova[J]. Rev Sci Instrum, 1992, 63(10): 5080-5082. doi: 10.1063/1.1143498
    [10]
    Remington B A, Weber S V, Marinak M M, et al. Single-mode and multimode Rayleigh-Taylor experiments on Nova[J]. Phys Plasmas, 1995, 2(1): 241-255. doi: 10.1063/1.871096
    [11]
    Kirkpatrick P, Baez A V. Formation of optical images by X-rays[J]. J Opt Soc Am, 1948, 38(9): 766-774. doi: 10.1364/JOSA.38.000766
    [12]
    Chon K S, Namba Y, Yoon K. Optimization of a Wolter type Ⅰ mirror for a soft X-ray microscope[J]. Prec Eng, 2006, 30(2): 223-230. doi: 10.1016/j.precisioneng.2005.09.002
    [13]
    Chon K S, Namba Y, Yoon K H. Precision machining of electroless nickel mandrel and fabrication of replicated mirrors for a soft X-ray microscope[J]. JSME International Journal Series C, 2006, 49(1): 56-62. doi: 10.1299/jsmec.49.56
    [14]
    Ninomiya K, Honda K, Aoki S, et al. Fabrication of an axisymmetric wolter type Ⅰ mirror with a gold deposited reflecting surface[J]. Jpn J Appl Phys, 1989, 28(11): 2303-2308.
    [15]
    Yamauchi K, Mimura H, Inagaki K, et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining[J]. Rev Sci Instrum, 2002, 73(11): 4028-4033. doi: 10.1063/1.1510573
    [16]
    Mori Y, Yamauchi K, Endo K. Mechanism of atomic removal in elastic emission machining[J]. Prec Eng, 1988, 10(1): 24-28. doi: 10.1016/0141-6359(88)90091-8
  • Relative Articles

    [1]Wang Ruijie, Liu Hongwei, Wang Lingyun, Gao Bin, Zhang Dongdong, Yuan Jianqiang. Development of nanosecond pulsed power supply for large-area dielectric barrier discharges[J]. High Power Laser and Particle Beams, 2025, 37(4): 045006. doi: 10.11884/HPLPB202537.240434
    [2]Ding Baiwen, Hao Jianhong, Zhang Fang, Zhao Qiang, Fan Jieqing, Dong Zhiwei. Simulation and source design of large area uniform bremsstrahlung field[J]. High Power Laser and Particle Beams, 2024, 36(12): 124003. doi: 10.11884/HPLPB202436.240175
    [3]Zhong Tiancheng, Chen Lin, Guo Fan, Zou Wenkang, Wang Meng, Xie Weiping. Initial design of a low-impendence large-area-bremsstrahlung diode coupled with coaxial MITL[J]. High Power Laser and Particle Beams, 2017, 29(06): 065002. doi: 10.11884/HPLPB201729.170004
    [4]Huang Zhongliang, Xu Qifu, Lai Dingguo, Yang Shi, Yang Li, Qiu Mengtong, Cong Peitian, Ren Shuqing, Wang Qiang. A low impedance large surface diode[J]. High Power Laser and Particle Beams, 2016, 28(01): 014005. doi: 10.11884/HPLPB201628.014005
    [5]Xia Junming, Sun Hailong, Huo Wenqing, Xu Yuemin, Sun Yueqiang, Bai Weihua, Liu Congliang, Meng Xiangguang. Effects of pressure on the pulsed magnetic confinement linear hollow cathode discharge[J]. High Power Laser and Particle Beams, 2015, 27(08): 084005. doi: 10.11884/HPLPB201527.084005
    [6]Lu Yiru, Zhang Chen, Ruan Jiufu, Yang Jun, Deng Guangsheng, Lv Guoqiang. Internal stress of photoresists for microfabrication of THz full-metal grating[J]. High Power Laser and Particle Beams, 2015, 27(11): 113101. doi: 10.11884/HPLPB201527.113101
    [7]Lu Yimin, Wang Shuyun, Guo Yanlong, Huang Guojun, Cheng Yong, Tian Fangtao. Mathematical model and experiment for preparing uniform film by PLD on large surface[J]. High Power Laser and Particle Beams, 2015, 27(07): 071007. doi: 10.11884/HPLPB201527.071007
    [8]Li Jinxi, Wu Wei, Lai Dingguo, Cheng Yinhui, Ma Liang, Zhao Mo, Guo Jinghai, Zhou Hui. Calculation of pulse X-ray spectrum field generated by intense diode[J]. High Power Laser and Particle Beams, 2014, 26(03): 035005. doi: 10.3788/HPLPB201426.035005
    [9]Lin Jiping, Liang Juxi, Liu Zhengkun, Wang Qingbo, Bao Jianguang, Hong Yilin, Fu Shaojun. Meniscus coating and thickness measurement of photoresist[J]. High Power Laser and Particle Beams, 2014, 26(10): 101017. doi: 10.11884/HPLPB201426.101017
    [10]Zong Fangke, Yang Qinlao, Gu Li, Li Xiang, Zhang Jingjin. Design of large-format X-ray framing image tube[J]. High Power Laser and Particle Beams, 2012, 24(10): 2386-2390. doi: 10.3788/HPLPB20122410.2386
    [11]liu zengyi, lin zulun, wang xiaoju, cao guichuan, qi kangcheng. Characteristics of lanthanum hexaboride thin film cathode deposited on large area substrate[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [12]tang ying, yi ai-ping, liu jing-ru, qian hang, huang xin, yu li, su jian-cang, ding zhen-jie, ding yong-zhong, yu jian-guo. Experimental study on generation of large area uniform electron beam[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [13]chen shao-wu, wang qun-shu, zhao hong, shao bi-bo, wang fei, yuwen cui-lei, zhang jian-min. On-line parameters measurement method for high energy laser with large beam profile[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [14]lin zu-lun, cao gui-chuan, zhang yi-de, chen ze-xiang, qi kang-cheng. Large area ring-shaped LaB6 cathode[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [15]yang an-min, wu deng-xue, liu chen-jun, xia lian-sheng, wang wen-dou, zhang kai-zhi. Large area dispenser cathode applied to high current linac[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [16]zhang yan, zhang rong zhu, dong jun, zhang jun, cai bang wei. Digital knifeedge testing technology on microoptical surface characterization[J]. High Power Laser and Particle Beams, 2004, 16(02): 0- .
    [17]wang zhan-shan, zhang zhong, wang feng-li, wu wen-juan, wang hong-chang, qin shu-ji, chen ling-yan. Fabrication of the multilayer beam splitters with large area for soft Xray laser interferometer[J]. High Power Laser and Particle Beams, 2004, 16(09): 0- .
    [18]zheng jian-gang, cai bang-wei, sui zhan, lu jing-ping, zheng kui-xing, zhang xiong-jun, dong yun, feng bin. Influence on discharge uniformity of electrodes configuration[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(1)

    1. 张耀文,张政权,刘庆想,欧伟丽. 新型双向储能变流器分析与研究. 太阳能学报. 2022(04): 82-89 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.8 %FULLTEXT: 15.8 %META: 82.4 %META: 82.4 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %其他: 0.2 %其他: 0.2 %Central District: 0.2 %Central District: 0.2 %China: 0.5 %China: 0.5 %India: 0.1 %India: 0.1 %Koesan: 0.3 %Koesan: 0.3 %Taiwan, China: 0.3 %Taiwan, China: 0.3 %[]: 0.7 %[]: 0.7 %上海: 0.5 %上海: 0.5 %中山: 0.1 %中山: 0.1 %北京: 14.8 %北京: 14.8 %十堰: 0.2 %十堰: 0.2 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.9 %台州: 0.9 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.7 %天津: 0.7 %太原: 0.3 %太原: 0.3 %宜春: 0.2 %宜春: 0.2 %宣城: 0.1 %宣城: 0.1 %常州: 0.2 %常州: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.7 %张家口: 0.7 %徐州: 0.1 %徐州: 0.1 %恩施: 0.1 %恩施: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.2 %杭州: 1.2 %株洲: 0.2 %株洲: 0.2 %桃园: 0.1 %桃园: 0.1 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.1 %湘潭: 0.1 %漯河: 2.9 %漯河: 2.9 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %芒廷维尤: 16.5 %芒廷维尤: 16.5 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.6 %苏州: 0.6 %衢州: 0.1 %衢州: 0.1 %西宁: 44.9 %西宁: 44.9 %西安: 0.2 %西安: 0.2 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.0 %郑州: 1.0 %长沙: 2.2 %长沙: 2.2 %青岛: 0.5 %青岛: 0.5 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他Central DistrictChinaIndiaKoesanTaiwan, China[]上海中山北京十堰南京南通台州合肥哈尔滨哥伦布嘉兴天津太原宜春宣城常州广州张家口徐州恩施新乡无锡昆明晋城普洱杭州株洲桃园武汉沈阳洛阳深圳温州湖州湘潭漯河石家庄福州秦皇岛纽约芒廷维尤芝加哥苏州衢州西宁西安运城邯郸郑州长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (2255) PDF downloads(194) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return