Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321
Citation: Wang Zicheng, Tang Bojun, Li Haiqiang, et al. W band traveling wave tube based on staggered double rectangular waveguide structure[J]. High Power Laser and Particle Beams, 2018, 30: 053008. doi: 10.11884/HPLPB201830.170445

W band traveling wave tube based on staggered double rectangular waveguide structure

doi: 10.11884/HPLPB201830.170445
  • Received Date: 2017-11-08
  • Rev Recd Date: 2018-01-09
  • Publish Date: 2018-05-15
  • Beam-wave interaction for a W band traveling wave tube(TWT) based on staggered double rectangular waveguide structure(SDRWS) is calculated by CST PIC, showing that the TWT has over 35 W output power and over 30 dB gain and about 5% electron efficiency from 92 GHz to 97 GHz on the condition of a 10 kV, 70 mA beam. Even if the beam voltage of 10 kV is relatively low, the sizes of SDRWS still remain relatively large, meaning that SDRWS is in favor of evading the difficulties in manufacturing. A process based on wire electrical discharge machining(wire-EDM) is proposed to manufacture SDRWS for W band TWT, and an SDRWS assembly is successfully obtained. Besides, box-shaped window and electron gun are also simulated by computer, and correspondent parts are manufactured and then put together into assemblies. Then "cold test" is performed on an SDRWS assembly put together with two box-shaped windows, showing that voltage standing wave ratio is lower than 2.067 from 92 GHz to 100 GHz.
  • [1]
    Gerum W, Lippert G, Malzahn P, et al. 94 GHz TWT for military radar applications[J]. IEEE Trans Elec Dev, 2001, 48(1): 72-73. doi: 10.1109/16.892170
    [2]
    Linde G J, Ngo M T, Danly B G, et al. WARLOC: A high-power coherent 94 GHz radar[J]. IEEE Trans Aerospace and Electronic Systems, 2008, 44(3): 1102-1117. doi: 10.1109/TAES.2008.4655367
    [3]
    Theiss A J, Meadows C J, True R B. Experimental investigation of a novel circuit for mm-wave TWTs[J]. IEEE Trans Elec Dev, 2007, 54(5): 1054-1060. doi: 10.1109/TED.2007.894255
    [4]
    Theiss A J, Meadows C J, Freeman R, et al. High-average-power W-band TWT development[J]. IEEE Trans Plasma Science, 2010, 38(6): 1239-1243. doi: 10.1109/TPS.2010.2041794
    [5]
    Feng J J, Hu Y F, Cai J K, et al. Progress of W-band 10 W CW TWT[C]//Proc of IVEC. 2010: 501-502.
    [6]
    Hu Yinfu, Feng Jinjun, Liu Jingkai, et al. Progress of wide bandwidth W-band 20 W CW TWT[C]//Proc of IVEC. 2014: 179-180.
    [7]
    Wei Y Y, Gong Y B, Duan Z Y, et al. Research of millimeter wave and terahertz vacuum devices in NKLST-VE[C]//Proc of GSMM. 2012: 633-636.
    [8]
    Wang Zicheng, Li Haiqiang, Xu Anyu, et al. An inner-feedback-style traveling-wave tube oscillator[J]. Journal of Electronics, 2012, 29(6): 556-561.
    [9]
    刘青伦, 王自成, 刘濮鲲. 基于双排矩形波导慢波结构W波段宽频带行波管模拟研究[J]. 物理学报, 2012, 61: 124101. doi: 10.7498/aps.61.124101

    Liu Qinglun, Wang Zicheng, Liu Pukun. Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure. Acta Physica Sinica, 2012, 61: 124101 doi: 10.7498/aps.61.124101
    [10]
    刘青伦, 王自成, 刘濮鲲, 等. 基于场匹配法的双排矩形栅慢波结构高频特性研究[J]. 物理学报, 2012, 61: 244102. doi: 10.7498/aps.61.244102

    Liu Qinglun, Wang Zicheng, Liu Pukun, et al. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 2012, 61: 244102 doi: 10.7498/aps.61.244102
    [11]
    谢文球, 王自成, 罗积润, 等. 基于开槽单矩形栅和圆形电子注的W波段返波振荡器[J]. 物理学报, 2013, 62: 158503. doi: 10.7498/aps.62.158503

    Xie Wenqiu, Wang Zicheng, Luo Jirun, et al. Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam. Acta Physica Sinica, 2013, 62: 158503 doi: 10.7498/aps.62.158503
  • Relative Articles

    [1]Wu Min’gan, Liu Yi, Lin Fuchang, Liu Siwei, Sun Jianjun. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32(4): 045002. doi: 10.11884/HPLPB202032.190356
    [2]Yu Liang, Sugai Taichi, Tokuchi Akira, Jiang Weihua. Repetitive pulsed power generator based on inductive-energy-storage pulse forming line[J]. High Power Laser and Particle Beams, 2018, 30(2): 025006. doi: 10.11884/HPLPB201830.170390
    [3]Luo Kui, Fu Sizu, Huang Xiuguang, He Zhiyu, Jia Guo, Shu Hua, He Hao, Xia Miao. Electrical conductivity of liquid deuterium under laser-driven shock loading[J]. High Power Laser and Particle Beams, 2017, 29(08): 082002. doi: 10.11884/HPLPB201729.170564
    [4]Jiang Weihua. Repetition rate pulsed power technology and its applications:(vii) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27(01): 010201. doi: 10.11884/HPLPB201527.010201
    [5]Jiang Weihua. Repetition rate pulsed power technology and its applications:(ⅵ) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26(03): 030201. doi: 10.3788/HPLPB201426.030201
    [6]Jiang Weihua. Repetition rate pulsed power technology and its applications:(iv) Advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(03): 537-543. doi: 10.3788/HPLPB20132503.0537
    [7]Jiang Weihua. Repetition rate pulsed power technology and its applications:(Ⅴ) The implication of pulse adding[J]. High Power Laser and Particle Beams, 2013, 25(08): 1877-1882. doi: 10.3788/HPLPB20132508.1877
    [8]Chen Wen, Fan Chengyu, Wang Haitao, Zhang Pengfei, Zhang Jinghui, Qiao Chunhong, Ma Huimin. Numerical study on prolonging lifetime of plasma channels generated by ultra-short laser pulses[J]. High Power Laser and Particle Beams, 2013, 25(04): 813-816.
    [9]Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(01): 10-15.
    [10]Jiang Weihua. Repetition rate pulsed power technology and its applications: (iii) The role of magnetic switches[J]. High Power Laser and Particle Beams, 2012, 24(06): 1269-1275. doi: 10.3788/HPLPB20122406.1269
    [11]Wang Haitao, Fan Chengyu, Shen Hong, Qiao Chunhong, Zhang Jinghui, Zhang Pengfei, Ma Huimin, Xu Huiling. Temporal evolution of plasma density in femtosecond light filaments[J]. High Power Laser and Particle Beams, 2012, 24(05): 1024-1028. doi: 10.3788/HPLPB20122405.1024
    [12]Tong Xin, Li Xiao’ang, Zhao Junping, Zhang Qiaogen. Arc radius and resistance measurement of spark gap switch[J]. High Power Laser and Particle Beams, 2012, 24(03): 647-650. doi: 10.3788/HPLPB20122403.0647
    [13]zhang zehai, shu ting, zhang jun, liu jing, zhu jun. Suppression of parasitic mode oscillation in relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [14]jin zhaoxin, jiao qingjie, chen xi, jing xiaopeng. Helical flux compression generator utilizing detonation products of aluminized explosive to compress magnetic flux[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [15]jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [16]tang enling, zhang qingming, zhang jian. Conductivity measurement of an expanding plasma cloud generated by hypervelocity impact LY12 aluminum target[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [17]li sheng-yin, wu wei-dong, wang feng, wang xue-min, tang yong-jian, sun wei-guo. Effects of Fe-embedding on microstructure and electrical properties of diamond like carbon films[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [18]gao jing-ming, liu yong-gui, yin yi, yang jian-hua. Numerical simulation of gas spark gap discharge[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [19]lin chen, zhang li-wen, qin xiao, gao jun-yi. Conductivity of self-guided laser plasma channel produced by femtosecond laser pulses in air[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [20]xie wei-ping, gong xing-gen, hao shi-rong, sun qi-zhi, liu lie-fang, dai wen-feng, liu zheng-fen, wang min-hua, han wen-hui, dai ying-ming, ding bo-nan. The generation of high Voltage by MFCG through combined Pulse power conditioning system[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Cited by

    Periodical cited type(1)

    1. 张文强,罗宇轩,杨长河. 等离子体技术在活性炭再生中的研究进展. 现代化工. 2023(S1): 49-53+58 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.3 %FULLTEXT: 33.3 %META: 61.1 %META: 61.1 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 1.2 %其他: 1.2 %China: 0.4 %China: 0.4 %France: 0.8 %France: 0.8 %Germany: 0.2 %Germany: 0.2 %India: 0.1 %India: 0.1 %Japan: 0.5 %Japan: 0.5 %Nahant: 0.2 %Nahant: 0.2 %Netherlands: 0.2 %Netherlands: 0.2 %United States: 0.2 %United States: 0.2 %[]: 0.7 %[]: 0.7 %三明: 0.1 %三明: 0.1 %上海: 3.2 %上海: 3.2 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 3.5 %北京: 3.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.4 %大连: 0.4 %天津: 0.4 %天津: 0.4 %宜春: 0.1 %宜春: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.1 %广州: 0.1 %开封: 0.1 %开封: 0.1 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 0.4 %张家口: 0.4 %徐州: 0.1 %徐州: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.3 %扬州: 0.3 %新乡: 0.1 %新乡: 0.1 %新加坡: 0.2 %新加坡: 0.2 %无锡: 0.4 %无锡: 0.4 %昌吉: 0.1 %昌吉: 0.1 %普洱: 0.1 %普洱: 0.1 %普赖恩维尔: 0.2 %普赖恩维尔: 0.2 %杜伊斯堡: 0.1 %杜伊斯堡: 0.1 %杭州: 0.8 %杭州: 0.8 %梅州: 0.1 %梅州: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 2.3 %武汉: 2.3 %沃思堡: 0.2 %沃思堡: 0.2 %沈阳: 0.5 %沈阳: 0.5 %泉州: 0.1 %泉州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 1.1 %漯河: 1.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.4 %纽瓦克: 0.4 %纽约州: 0.1 %纽约州: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 22.3 %芒廷维尤: 22.3 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 39.7 %西宁: 39.7 %西安: 1.7 %西安: 1.7 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.2 %运城: 1.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.5 %重庆: 0.5 %长沙: 1.9 %长沙: 1.9 %长治: 0.1 %长治: 0.1 %青岛: 0.1 %青岛: 0.1 %其他其他ChinaFranceGermanyIndiaJapanNahantNetherlandsUnited States[]三明上海东莞中山丹东保定兰州加利福尼亚州北京十堰南京南通台州合肥哥伦布嘉兴大庆大连天津宜春宣城常州平顶山广州开封弗吉尼亚州张家口徐州惠州成都扬州新乡新加坡无锡昌吉普洱普赖恩维尔杜伊斯堡杭州梅州武威武汉沃思堡沈阳泉州泸州洛阳济南深圳温州湖州湘潭漯河烟台石家庄福州秦皇岛纽瓦克纽约州绵阳芒廷维尤芝加哥苏州衢州西宁西安贵阳运城邯郸郑州重庆长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (1210) PDF downloads(127) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return