Volume 30 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
Li Zhigang, Bao Zhenjun, Zhu Heng, et al. Restraining mid-spatial-frequency error of large-size off-axis parabolic mirrors by multi-tool NC polishing[J]. High Power Laser and Particle Beams, 2018, 30: 062003. doi: 10.11884/HPLPB201830.170457
Citation: Li Zhigang, Bao Zhenjun, Zhu Heng, et al. Restraining mid-spatial-frequency error of large-size off-axis parabolic mirrors by multi-tool NC polishing[J]. High Power Laser and Particle Beams, 2018, 30: 062003. doi: 10.11884/HPLPB201830.170457

Restraining mid-spatial-frequency error of large-size off-axis parabolic mirrors by multi-tool NC polishing

doi: 10.11884/HPLPB201830.170457
  • Received Date: 2017-11-13
  • Rev Recd Date: 2018-01-12
  • Publish Date: 2018-06-15
  • The mid-spatial-frequency error (MSFR) of large aperture aspherical optical elements have a direct influence on the precision of the beam diffusion function and the energy scattering of the high energy laser. To solve this problem, we put forward a kind of multi-tool NC polishing technology of computer controlled optical surfacing(CCOS) for effective suppression of MSFR. The polishing process of semi-rigid polishing tool is analyzed by finite element methods, and the polishing process is theoretically simulated based on Bridging model. The experimental results show that the MSFR of large aperture aspherical optical elements can be effectively reduced by multi-tool polishing technology. The wavefront PSD1 value of specific spatial frequency has been restrained effectively. For the two finished ϕ460 mm elements, the wavefront PSD1 value has a 70% descend down to 2.835 nm. Besides, the PV value is less than 0.16λ(632.8 nm) and the RMS value is less than 0.02λ.
  • loading
  • [1]
    Malacara D. Optical shop testing[M]. New York: Wiley, 1992.
    [2]
    Roger B Huxford. Wide FOV head mounted display using hybrid optics[C]//Proc of SPIE. 2004, 5249: 230-237.
    [3]
    Zhang X J. Manufacturing of a three mirror anastigmat telescope[C]//Proc of SPIE. 2003, 4829: 884-885.
    [4]
    Jones R A. Computer-controlled optical surfacing with orbital tool motion[C]//Proc of SPIE. 1985, 540: 41-48.
    [5]
    Pollicove H M, Fess E M, Schoen J M. Deterministic manufacturing processes for precision optical surfaces[J]//Proc of SPIE. 2003, 5078: 90-96.
    [6]
    Tinker F, Xin K. Fabrication of SiC aspheric mirrors with low mid-spatial error[C]. Proc of SPIE. 2013: 88370M.
    [7]
    Harvey J E, Kotha A. Scattering effects from residual optical fabrication errors[C]//Proc of SPIE. 1995, 2576: 155-174.
    [8]
    Aikens D M. Origin and evolution of the optics specifications for the National Ignition Facility[C]//Proc of SPIE. 1995, 2536: 2-12.
    [9]
    Martin H M, Cuerdun B, Dettmann L R, et al. Active optics and force optimization for the first 8.4 m LBT mirror[C]//Proc of SPIE. 2004, 5489: 826-837.
    [10]
    Kurz P, Antoni M, Dinger U. Optics for EUV lithography[C]//International Microprocesses & Nanotechnology Conference. 2010: 264.
    [11]
    Kim D W, Park W H, An H K, et al. Parametric smoothing model for visco-elastic polishing tools[J]. Opt Express, 2010, 18(21): 22515-22526.
    [12]
    Mehta P K, Reid P B. A mathematical model for optical smoothing prediction of high-spatial frequency surface errors[C]//Proc of SPIE. 1999, 3786: 447-459.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article views (1094) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return