Citation: | Li Zhigang, Bao Zhenjun, Zhu Heng, et al. Restraining mid-spatial-frequency error of large-size off-axis parabolic mirrors by multi-tool NC polishing[J]. High Power Laser and Particle Beams, 2018, 30: 062003. doi: 10.11884/HPLPB201830.170457 |
[1] |
Malacara D. Optical shop testing[M]. New York: Wiley, 1992.
|
[2] |
Roger B Huxford. Wide FOV head mounted display using hybrid optics[C]//Proc of SPIE. 2004, 5249: 230-237.
|
[3] |
Zhang X J. Manufacturing of a three mirror anastigmat telescope[C]//Proc of SPIE. 2003, 4829: 884-885.
|
[4] |
Jones R A. Computer-controlled optical surfacing with orbital tool motion[C]//Proc of SPIE. 1985, 540: 41-48.
|
[5] |
Pollicove H M, Fess E M, Schoen J M. Deterministic manufacturing processes for precision optical surfaces[J]//Proc of SPIE. 2003, 5078: 90-96.
|
[6] |
Tinker F, Xin K. Fabrication of SiC aspheric mirrors with low mid-spatial error[C]. Proc of SPIE. 2013: 88370M.
|
[7] |
Harvey J E, Kotha A. Scattering effects from residual optical fabrication errors[C]//Proc of SPIE. 1995, 2576: 155-174.
|
[8] |
Aikens D M. Origin and evolution of the optics specifications for the National Ignition Facility[C]//Proc of SPIE. 1995, 2536: 2-12.
|
[9] |
Martin H M, Cuerdun B, Dettmann L R, et al. Active optics and force optimization for the first 8.4 m LBT mirror[C]//Proc of SPIE. 2004, 5489: 826-837.
|
[10] |
Kurz P, Antoni M, Dinger U. Optics for EUV lithography[C]//International Microprocesses & Nanotechnology Conference. 2010: 264.
|
[11] |
Kim D W, Park W H, An H K, et al. Parametric smoothing model for visco-elastic polishing tools[J]. Opt Express, 2010, 18(21): 22515-22526.
|
[12] |
Mehta P K, Reid P B. A mathematical model for optical smoothing prediction of high-spatial frequency surface errors[C]//Proc of SPIE. 1999, 3786: 447-459.
|