Jiang Haifu, Li Shenggang, Zhou Jingjing, et al. Effect of atomic oxygen and ultraviolet on surface structure and composition of Kapton/Al film[J]. High Power Laser and Particle Beams, 2015, 27: 124006. doi: 10.11884/HPLPB201527.124006
Citation: Wang Lulu, Huang Wenhua, Zhang Yonghua, et al. Analysis for pattern of reflector antenna with physical optics method[J]. High Power Laser and Particle Beams, 2018, 30: 063001. doi: 10.11884/HPLPB201830.170463

Analysis for pattern of reflector antenna with physical optics method

doi: 10.11884/HPLPB201830.170463
  • Received Date: 2017-11-05
  • Rev Recd Date: 2018-01-22
  • Publish Date: 2018-06-15
  • Analysis for the radiation pattern of antennas with physical optics method is now widely used in the calculation for far field pattern of reflector antennas, which has fast computing speed and low memory requirements. The expression to calculate the far field of reflector antennas using the Stratton-Chu integral formula is derived based on surface current, and the directivity of an offset reflector antenna calculated in MATLAB is right using this method comparing with the results in the reference. The expression to calculate the gain of antennas is derived with cosqθ as pattern of the feed. The offset reflector antenna is shaped for good gain flatness during scanning in the pitching direction for 20°, and the far field pattern of shaped reflected antenna is analyzed. Results of gain of the reflector antenna in different scanning angles before and after shaping is calculated, which show that the gain flatness is improved by shaping and less time and lower memory space is taken using this method to analyse the far field pattern of antennas with physical optics method.
  • [1]
    刘旭峰, 刘少东, 张福顺, 等. 宽角扫描双反射面天线的方向图分析[J]. 西安电子科技大学学报, 2005, 32(1): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD200501018.htm

    Liu Xufeng, Liu Shaodong, Zhang Fushun. Pattern analysis of dual-reflector antennas under wide-angle scanning. Journal of Xidian University, 2005, 32(1): 80-83 https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD200501018.htm
    [2]
    Mittra R, Rushdi A. An efficient approach for computing the geometrical optics field reflected from a numerically specified surface[J]. IEEE Trans Antennas and Propagation, 1979, 27(6): 871-877. doi: 10.1109/TAP.1979.1142198
    [3]
    Rahmat-Samii Y. A comparison between GO/Aperture-Field and Physical-Optics methods for offset reflectors[J]. 1984, 32(3): 301-306.
    [4]
    刘少东. 星载有限电扫描天线的研究[D]. 西安: 西安电子科技大学, 2005.

    Liu Shaodong. Research on limited electronically scanning antenna on board. Xi'an: Xidian University, 2005
    [5]
    卢万铮. 天线理论与技术[M]. 西安: 西安电子科技大学出版社, 2004.

    Lu Wanzheng. Antenna theory and techniques. Xi'an: Xidian University Press, 2004
    [6]
    王曼珠, 张喆民, 崔红跃. MATLAB在天线方向图中的应用与研究[J]. 电气电子教学学报, 2004, 26(4): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQDZ200404007.htm

    Wang Manshu, Zhang Zhemin, Cui Hongyue. The application and study of antenna radiation pattern based on MATLAB. Journal of Electrical & Electronic Engineering Education, 2004, 26(4): 25-27 https://www.cnki.com.cn/Article/CJFDTOTAL-DQDZ200404007.htm
    [7]
    Bibi S, Faisal N, Xie S G. Analysis of low side lobe reflector antenna[C]//IEEE Multitopic Conference. 2006.
    [8]
    Warren L S, Gary A T. Antenna theory and design. 2nd ed. Beijing: Posts and Telecom Press, 2006
    [9]
    王璐璐, 黄文华, 章勇华, 等. 旋转偏馈反射面天线的赋形设计[J]. 现代应用物理, 2016, 7: 030501. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201603004.htm

    Wang Lulu, Huang Wenhua, Zhang Yonghua, et al. Shaping design of offset rotated reflector antennas. Modern Applied Physics, 2016, 7: 030501 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201603004.htm
    [10]
    宋微微. 具有局部凸起形变反射面天线的方向图仿真与分析[D]. 西安: 西安电子科技大学, 2008.

    Song Weiwei. Radiation pattern simulation and analysis of offset reflector antennas with local protuberant distortion. Xi'an: Xidian University, 2008
  • Relative Articles

    [1]Mao Chongyang, Xue Chuang, Xiao Delong, Ding Ning. Simulation method of quadruple-level circuit model for stack and vacuum section of Julong-I facility[J]. High Power Laser and Particle Beams, 2020, 32(2): 025004. doi: 10.11884/HPLPB202032.190330
    [2]Mao Chongyang, Xue Chuang, Xiao Delong, Wang Xiaoguang, Wang Guanqiong, Ding Ning. Full circuit simulation for influence of the laser-triggered gas switches' closing time on load current in PTS facility[J]. High Power Laser and Particle Beams, 2019, 31(1): 015001. doi: 10.11884/HPLPB201931.180256
    [3]Zhang Huang, Wang Yi, Li Tiantao, Yang Zhiyong, Li Qin, Jiang Wei, Li Yuan, Huang Ziping, Chen Sifu, Shi Jinshui, Zhang Linwen, Deng Jianjun. Beam load effect on the cavity voltage waveform in linear induction accelerators[J]. High Power Laser and Particle Beams, 2016, 28(01): 015101. doi: 10.11884/HPLPB201628.015101
    [4]Xue Chuang, Ding Ning, Zhang Yang, Xiao Delong, Sun Shunkai, Ning Cheng, Shu Xiaojian, . Full circuit simulation for electromagnetic pulse forming and transmission in the PTS facility[J]. High Power Laser and Particle Beams, 2016, 28(01): 015014. doi: 10.11884/HPLPB201628.015014
    [5]Xue Chuang, Ding Ning, Xiao Delong, Zhang Yang, Sun Shunkai, Ning Cheng, Shu Xiaojian. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser and Particle Beams, 2016, 28(12): 125004. doi: 10.11884/HPLPB201628.160138
    [6]Xia Minghe, Li Fengping, Ji Ce, Wei Bing, Feng Shuping, Wang Meng, Xie Weiping. Current pulse shaping of load on Primary Test Stand facility[J]. High Power Laser and Particle Beams, 2016, 28(05): 055003. doi: 10.11884/HPLPB201628.055003
    [7]Kan Mingxian, Zhang Zhaohui, Duan Shuchao, Wang Ganghua, Yang Long, Xiao Bo, Wang Guilin. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator[J]. High Power Laser and Particle Beams, 2015, 27(12): 125001. doi: 10.11884/HPLPB201527.125001
    [8]Wang Jie, Chen Lin, Guo Fan, Zhao Yue, Zhang Yuanjun, Li Ye, Wang Meng, Dai Yingmin. Shaping of output current rise time on 1 MA-LTD cavity[J]. High Power Laser and Particle Beams, 2014, 26(04): 045009. doi: 10.11884/HPLPB201426.045009
    [9]Guo Fan, Zou Wenkang, Chen Lin. Circuit simulation method for calculating vacuum power flow in magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2013, 25(07): 1845-1850. doi: 10.3788/HPLPB20132507.1845
    [10]Zou Wenkang, He Yong, Chen Lin, Zhou Liangji, Wang Meng, Xie Weiping, Deng Jianjun. Power flow computation with circuit for magnetically-insulated inductive voltage adder[J]. High Power Laser and Particle Beams, 2012, 24(05): 1211-1216. doi: 10.3788/HPLPB20122405.1211
    [11]Lai Dingguo, Xie Linshen. Application of Pspice subcircuit to circuit simulation of pulsed power device[J]. High Power Laser and Particle Beams, 2012, 24(03): 689-692. doi: 10.3788/HPLPB20122403.0689
    [12]He Yong, Zou Wenkang, ZHang Le, Song SHengyi. Circuit simulation and analysis of magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2012, 24(03): 581-586. doi: 10.3788/HPLPB20122403.0581
    [13]Xia Minghe, Ji Ce, Wang Yujuan, Wang Meng, Li Feng, Feng Shuping, Xie Weiping. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772. doi: 10.3788/HPLPB20122411.2768
    [14]zeng zhengzhong. Circuit simulation of exponential transmission line for petawatt Z-pinch plasma drivers[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [15]zhou liangji, deng jianjun, chen lin, dai yingmin, wang meng, xie weiping, feng shuping, yang libing. Design of 1 MA linear transformer driver stage[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [16]wang ganping, xiang fei, tan jie, luo min, kang qiang, cao shaoyun. Physical design and simulation of LTD-based source with long pulse and high power[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [17]song sheng-yi, gu yuan-chao, guan yong-chao, zou wen-kang. Circuit simulation of magnetically insulated transmission line driving a wire array to implode[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [18]zou wen-kang, zhou liang-ji, chen lin, deng jian-jun. Physical design and simulation for a 100 GW LTD system[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [19]zhou liang-ji, deng jian-jun, chen lin, xie wei-ping, feng shu-ping, guan yong-chao, wu shou-dong, ren jing, li ye. Influence of volt-second product of magnetic core on output of linear transformer driver[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [20]song sheng-yi, qiu xu, wang wen-dou, xie wei-ping. Circuit model for magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
  • Cited by

    Periodical cited type(1)

    1. 牛海华,王锋锋,王志军,刘鲁北,陈伟龙,李亚光,孙国珍,郑海,李智慧,张斌,何源. 基于3DE平台的协同设计在加速器装置建设中的应用——以CS30 α辐照装置为例. 强激光与粒子束. 2025(01): 63-73 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.2 %FULLTEXT: 25.2 %META: 72.2 %META: 72.2 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 0.7 %其他: 0.7 %Canada: 0.1 %Canada: 0.1 %China: 1.1 %China: 1.1 %France: 0.2 %France: 0.2 %India: 0.1 %India: 0.1 %Indianapolis: 0.2 %Indianapolis: 0.2 %Italy: 0.1 %Italy: 0.1 %Japan: 0.1 %Japan: 0.1 %Russian Federation: 0.1 %Russian Federation: 0.1 %United States: 1.2 %United States: 1.2 %[]: 0.5 %[]: 0.5 %三亚: 0.1 %三亚: 0.1 %上海: 0.5 %上海: 0.5 %东莞: 0.3 %东莞: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %亳州: 0.1 %亳州: 0.1 %佛罗里达: 0.2 %佛罗里达: 0.2 %兰州: 0.3 %兰州: 0.3 %利雅德: 0.1 %利雅德: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 17.6 %北京: 17.6 %南京: 0.2 %南京: 0.2 %厦门: 0.1 %厦门: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %哈尔科夫: 0.1 %哈尔科夫: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %哥伦比亚: 0.1 %哥伦比亚: 0.1 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.1 %密蘇里城: 0.1 %巴黎: 0.2 %巴黎: 0.2 %希腊: 0.1 %希腊: 0.1 %广州: 0.2 %广州: 0.2 %张家口: 0.5 %张家口: 0.5 %德国萨克森自由州: 0.1 %德国萨克森自由州: 0.1 %悉尼: 0.2 %悉尼: 0.2 %惠州: 0.1 %惠州: 0.1 %成都: 0.5 %成都: 0.5 %新乡: 0.1 %新乡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.5 %杭州: 0.5 %武汉: 0.5 %武汉: 0.5 %济南: 0.2 %济南: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %漯河: 0.1 %漯河: 0.1 %科珀斯克里斯蒂: 0.1 %科珀斯克里斯蒂: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.3 %纽瓦克: 0.3 %维多利亚: 0.1 %维多利亚: 0.1 %绵阳: 0.7 %绵阳: 0.7 %美国佛罗里达: 0.1 %美国佛罗里达: 0.1 %芒廷维尤: 18.0 %芒廷维尤: 18.0 %芝加哥: 0.1 %芝加哥: 0.1 %荷顿山: 0.1 %荷顿山: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 44.7 %西宁: 44.7 %西安: 1.1 %西安: 1.1 %费利蒙: 0.1 %费利蒙: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.2 %重庆: 0.2 %长沙: 0.1 %长沙: 0.1 %阿什本: 0.1 %阿什本: 0.1 %黑森州: 0.2 %黑森州: 0.2 %龙岩: 0.1 %龙岩: 0.1 %其他其他CanadaChinaFranceIndiaIndianapolisItalyJapanRussian FederationUnited States[]三亚上海东莞中山临汾丹东亳州佛罗里达兰州利雅德加利福尼亚州北京南京厦门台州合肥哈尔科夫哥伦布哥伦比亚安康宣城密蘇里城巴黎希腊广州张家口德国萨克森自由州悉尼惠州成都新乡晋城普洱朝阳杭州武汉济南深圳温州漯河科珀斯克里斯蒂秦皇岛纽瓦克维多利亚绵阳美国佛罗里达芒廷维尤芝加哥荷顿山衢州西宁西安费利蒙达州运城郑州重庆长沙阿什本黑森州龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (1565) PDF downloads(279) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return