Hao Xiaojun, Chen Xiang, Yan Jinghai. Application of time reversal technique in multipath signal transmission[J]. High Power Laser and Particle Beams, 2015, 27: 103252. doi: 10.11884/HPLPB201527.103252
Citation: Wang Qiankun, Chai Changchun, Xi Xiaowen, et al. Damage effect and mechanism of Darlington tubes caused by intense electromagnetic interference[J]. High Power Laser and Particle Beams, 2018, 30: 083008. doi: 10.11884/HPLPB201830.170472

Damage effect and mechanism of Darlington tubes caused by intense electromagnetic interference

doi: 10.11884/HPLPB201830.170472
Funds:

the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics 2015-0214.XY.K

More Information
  • Author Bio:

    Wang Qiankun(1990—), male, Master degree candidate, engaged in research of semiconductor devices and circuit reliability; wang__qk@163.com

  • Received Date: 2017-11-19
  • Rev Recd Date: 2018-04-26
  • Publish Date: 2018-08-15
  • A two-dimensional electron-thermal model of the PNP type Darlington tube is established, and the transient behaviors of the Darlington tube in the forward-active region are simulated with the injection of high power microwaves (HPMs) and electromagnetic pulses (EMPs) from the collector. A discussion and a comparison of the damage effects and the mechanism of the device under the injection of HPMs and EMPs are performed. The results show that temperature variation has a periodic rule of "decrease-increase" and temperature elevation occurs in the positive half-period, and the cylindrical region of base-emitter junction of the second transistor (near the emitter of the Darlington tube) is susceptible to damage when HPM signals are injected. While temperature keeps rising and the rate of increase presents a tendency of "rapid-slow" until the device burns out under the injection of EMP signals, and the damage location is the same as the damage area of HPM injection. In addition, the damage mechanism during the positive half-period of HPM injection is similar to that of EPM injection. Finally, the dependence relations of damage energy and damage power of EMPs and HPMs on pulse-width are obtained in a nanosecond range. It is demonstrated that energy threshold increase slowly while power threshold decrease with the increasing of pulse-width.
  • [1]
    Kim K, Iliadis A A. Operational upsets and critical new bit errors in CMOS digital inverters due to high power pulsed electromagnetic interference[J]. Solid-State Electronics, 2010, 54(1): 18-21. doi: 10.1016/j.sse.2009.09.006
    [2]
    Iliadis A A, Kim K. Theoretical foundation for upsets in CMOS circuit due to high-power electromagnetic interference[J]. IEEE Trans Device Mater Reliab, 2010, 10(3): 347-352. doi: 10.1109/TDMR.2010.2050692
    [3]
    Chai Changchun, Xi Xiaowen, Ren Xingrong, et al. The damage effect and mechanism of the bipolar transistor induced by the intense electromagnetic pulse[J]. Acta Physica Sinica, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [4]
    Wang Haiyang, Li Jiayin, Li Hao, et al. Experimental study and SPICE simulation of CMOS inverters latch-up effects due to high power microwave interference[J]. Prog Electromagn Res, 2008, 87: 313-330.
    [5]
    Mansson D, Thottappillil R, Backstrom M, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Trans Electromagn Compat, 2008, 50(1): 434-437.
    [6]
    You Hailong, Lan Jianchun, Fan Juping, et al. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave[J]. Acta Physica Sinica, 2012, 61: 108501. doi: 10.7498/aps.61.108501
    [7]
    Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwave: summary of test experience[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 396-403. doi: 10.1109/TEMC.2004.831814
    [8]
    Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 380-387. doi: 10.1109/TEMC.2004.831842
    [9]
    Li P, Liu Guozhi, Huang Wenhua, et al. The mechanism of HPM pulse-duration damage effect on semiconductor component[J]. High Power Laser and Particle Beams, 2001, 13(3): 353-356. http://www.hplpb.com.cn/article/id/1626
    [10]
    Fan Juping, Zhang Ling, Jia Xinzhang. HPM damage mechanism on bipolar transistors[J]. High Power Laser and Particle Beams, 2010, 22(6): 1319-1322. doi: 10.3788/HPLPB20102206.1319
    [11]
    Ma Zhenyang, Chai Changchun, Ren Xingrong, et al. The damage effect and mechanism of the bipolar transistor caused by microwaves[J]. Acta Physica Sinica, 2012, 61: 078501. doi: 10.7498/aps.61.078501
    [12]
    Ren Xingrong, Chai Changchun, Ma Zhenyang, et al. The damage effect and mechanism of bipolar transistors induced by injection of electromagnetic pulse from the base[J]. Acta Physica Sinica, 2013, 62: 068501. doi: 10.7498/aps.62.068501
    [13]
    Chai Changchun, Zhang Bing, Ren Xingrong, et al. Injection damage of the integrated silicon low-noise amplifier[J]. J Xidian Univ, 2010, 37(5): 898-903.
    [14]
    Chai Changchun, Yang Yintang, Zhang Bing, et al. Mechanism of energy-injection damage of silicon bipolar low-noise amplifiers[J]. Semicond Sci Technol, 2008, 29: 035003.
    [15]
    2004 ISE-TCAD Dessis simulation user's manual[M]. Zurich: Integrated Systems Engineering Corp, 2004.
    [16]
    Radasky W A. Protection of commercial installations from the high-frequency electromagnetic threats of HEMP and IEMI using IEC standards[C]//Asia-Pacific Symposium on Electromagnetic Compatibility. 2010: 758-761.
    [17]
    Jayant B B, Ghandhi S K. Analytical solutions for the breakdown voltage of abrupt cylindrical and spherical junctions[J]. Solid State Electronics, 1976, 19(9): 739-744. doi: 10.1016/0038-1101(76)90152-0
    [18]
    Wunsch D C, Bell R R. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages[J]. IEEE Trans Nucl Sci, 1968, 15(6): 244-259. doi: 10.1109/TNS.1968.4325054
    [19]
    Tasca D M. Pulse power failure modes in semiconductors[J]. IEEE Trans Nucl Sci, 1970, 17(6): 364-372. doi: 10.1109/TNS.1970.4325819
    [20]
    Brown W D. Semiconductors device degradation by high amplitude current pulses[J]. IEEE Trans Nucl Sci, 1972, 19(6): 68-75. doi: 10.1109/TNS.1972.4326810
  • Relative Articles

    [1]Jiang Jinbo, Ren Yingjie, Li Yi, Zhang Jiaxing, Zhao Xin, Xu Lin, Ouyang Shanchuan. Research on waveform optimization for quasi-square wave pulse source based on PFN-Marx[J]. High Power Laser and Particle Beams, 2025, 37(3): 035008. doi: 10.11884/HPLPB202537.240315
    [2]Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320
    [3]Lu Xicheng, Qiu Yang, Jiang Ling, Wang Haibo, Tian Jin, Guo Xinwei. Time reversal cavity path and its influence on signal to noise ratio[J]. High Power Laser and Particle Beams, 2021, 33(12): 123006. doi: 10.11884/HPLPB202133.210171
    [4]Tao Xuefeng, Liu Kun. Pulse shaping method for compulsator[J]. High Power Laser and Particle Beams, 2018, 30(9): 095001. doi: 10.11884/HPLPB201830.170325
    [5]Zhong Xuanming, Liao Cheng. Spatial power combining algorithm based on space-frequency time-reversal technology[J]. High Power Laser and Particle Beams, 2016, 28(11): 113004. doi: 10.11884/HPLPB201628.160123
    [6]Wang Qiushi, Luo Jirun, Peng Shuyuan. Optimization of distributed-loss circuit of gyrotron traveling wave amplifier using multi-objective genetic algorithm[J]. High Power Laser and Particle Beams, 2015, 27(09): 093004. doi: 10.11884/HPLPB201527.093004
    [7]Yang Yang, Long Yunfei, Wu Wei, Yang Xiaomin, Liu Kai. Eliminating phase error caused by multi-path effect for phase measuring profilometry

    [J]. High Power Laser and Particle Beams, 2015, 27(04): 041013. doi: 10.11884/HPLPB201527.041013
    [8]Zhang Meng, Liao Lang. Optimization design of photo-injector using genetic algorithm[J]. High Power Laser and Particle Beams, 2014, 26(02): 025104. doi: 10.3788/HPLPB201426.025104
    [9]Lei Dechuan, Chen Hao, Wang Yuan, Zhang Chengxin, Chen Yunbin, Hu Dongcai. Accelerating simultaneous algebraic reconstruction technique by multi CUDA-enabled GPU[J]. High Power Laser and Particle Beams, 2013, 25(09): 2418-2422. doi: 10.3788/HPLPB20132509.2418
    [10]Yang Chengwu, Liu Wenqing, Zhang Yujun. Algorithm for retrieving vertical visibility of laser diode ceilometer[J]. High Power Laser and Particle Beams, 2012, 24(02): 307-311. doi: 10.3788/HPLPB20122402.0307
    [11]chen bo, cheng chengqi, guo shide, pu guoliang, geng zexun. Unsymmetrical multi-limit iterative blind deconvolution algorithm for adaptive optics image restoration[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [12]zhang yunfei, he jianguo, wang yajun, luo lili, ji fang, huang wen. Analysis of dwell time algorithm based on optimization theory for computer controlled optical surfacing[J]. High Power Laser and Particle Beams, 2011, 23(12): 17-18.
    [13]zhang yan, yang chunping, guo jing, kang meiling, wu jian. Spectrum extraction mode for Fourier telescopy in laboratory[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [14]li xiangqiang, liu qingxiang, zhang jianqiong, zhao liu. Design and experiment of S-band multiport radial line power divider[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]tang lei, shu zhifeng, dong jihui, yue bin, shen fahua, dong jingjing, sun dongsong. Measurement of slant visibility and its iteration method with diode-laser lidar[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [16]fang zhiheng, zhang mengjie, wang wei, dong jiaqin, ye junjian, xiong jun, wang ruirong, wang chen, sun jinren, wu jiang, fu sizu, gu yuan, wang shiji. Laser pulse shape optimization for flat target compression[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]han dao-wen, liu wen-qing, zhang yu-jun, liu jian-guo, lu yi-huai, zhao nan-jing. Memorable glide window integral algorithm for retrieving cloud height[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [18]zeng fa, tan qiao-feng, wei xiao-feng, xiang yong, yan ying-bai, jin guo-fan. High precision reconstruction of distorted wavefront in high power laser system[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [19]zhang wei, zhang xiao-bo, shu fang-jie, li yong-ping. Design of diffractive optical elements by step iterative algorithm[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [20]li da-hai, zhao xiao-feng, chen huai-xin, chen zhen-pei, chen bo, jing feng. Algorithm study of wavefront reconstruction based on the cyclic radial shear interferometer[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(4)

    1. 唐文翰. 多光缆的光纤通信信号多路传输系统. 电子制作. 2019(12): 3-4+29 .
    2. 向波,张裔智. 基于最低能耗约束的光纤网络通信优化模型设计. 激光杂志. 2018(04): 148-151 .
    3. 王冠,陈辉,李宁. 多光缆的光纤通信信号多路传输系统. 激光杂志. 2018(08): 178-182 .
    4. 钟选明,廖成. 基于空频时间反演的空间功率合成技术. 强激光与粒子束. 2016(11): 85-88 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.8 %FULLTEXT: 28.8 %META: 68.7 %META: 68.7 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.7 %其他: 2.7 %其他: 0.4 %其他: 0.4 %China: 0.4 %China: 0.4 %India: 0.1 %India: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.9 %上海: 0.9 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %六安: 0.1 %六安: 0.1 %内江: 0.1 %内江: 0.1 %北京: 30.1 %北京: 30.1 %南京: 0.6 %南京: 0.6 %台州: 0.5 %台州: 0.5 %周口: 0.1 %周口: 0.1 %哈尔科夫: 0.2 %哈尔科夫: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.1 %大连: 0.1 %安康: 0.3 %安康: 0.3 %宣城: 0.2 %宣城: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.8 %张家口: 0.8 %成都: 0.2 %成都: 0.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.4 %济南: 0.4 %深圳: 0.1 %深圳: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.4 %湖州: 0.4 %漯河: 0.3 %漯河: 0.3 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.3 %绍兴: 0.3 %罗马: 0.1 %罗马: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 36.7 %西宁: 36.7 %西安: 0.9 %西安: 0.9 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.9 %郑州: 0.9 %重庆: 0.1 %重庆: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.1 %长治: 0.1 %其他其他ChinaIndiaSeattleTaiwan, China[]上海中山临汾丹东六安内江北京南京台州周口哈尔科夫哥伦布大连安康宣城广州张家口成都扬州新乡晋城普洱杭州武汉沈阳济南深圳渭南湖州漯河石家庄秦皇岛绍兴罗马美国伊利诺斯芝加哥芒廷维尤芝加哥衢州西宁西安贵阳赣州运城郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1142) PDF downloads(81) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return