Ke Xizheng, Yang Shangjun, Wu Jiali, et al. Research progress of adaptive optics in wireless optical communication system for Xi’an University of Technology[J]. High Power Laser and Particle Beams, 2021, 33: 081003. doi: 10.11884/HPLPB202133.210167
Citation: Wang Qiankun, Chai Changchun, Xi Xiaowen, et al. Damage effect and mechanism of Darlington tubes caused by intense electromagnetic interference[J]. High Power Laser and Particle Beams, 2018, 30: 083008. doi: 10.11884/HPLPB201830.170472

Damage effect and mechanism of Darlington tubes caused by intense electromagnetic interference

doi: 10.11884/HPLPB201830.170472
Funds:

the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics 2015-0214.XY.K

More Information
  • Author Bio:

    Wang Qiankun(1990—), male, Master degree candidate, engaged in research of semiconductor devices and circuit reliability; wang__qk@163.com

  • Received Date: 2017-11-19
  • Rev Recd Date: 2018-04-26
  • Publish Date: 2018-08-15
  • A two-dimensional electron-thermal model of the PNP type Darlington tube is established, and the transient behaviors of the Darlington tube in the forward-active region are simulated with the injection of high power microwaves (HPMs) and electromagnetic pulses (EMPs) from the collector. A discussion and a comparison of the damage effects and the mechanism of the device under the injection of HPMs and EMPs are performed. The results show that temperature variation has a periodic rule of "decrease-increase" and temperature elevation occurs in the positive half-period, and the cylindrical region of base-emitter junction of the second transistor (near the emitter of the Darlington tube) is susceptible to damage when HPM signals are injected. While temperature keeps rising and the rate of increase presents a tendency of "rapid-slow" until the device burns out under the injection of EMP signals, and the damage location is the same as the damage area of HPM injection. In addition, the damage mechanism during the positive half-period of HPM injection is similar to that of EPM injection. Finally, the dependence relations of damage energy and damage power of EMPs and HPMs on pulse-width are obtained in a nanosecond range. It is demonstrated that energy threshold increase slowly while power threshold decrease with the increasing of pulse-width.
  • [1]
    Kim K, Iliadis A A. Operational upsets and critical new bit errors in CMOS digital inverters due to high power pulsed electromagnetic interference[J]. Solid-State Electronics, 2010, 54(1): 18-21. doi: 10.1016/j.sse.2009.09.006
    [2]
    Iliadis A A, Kim K. Theoretical foundation for upsets in CMOS circuit due to high-power electromagnetic interference[J]. IEEE Trans Device Mater Reliab, 2010, 10(3): 347-352. doi: 10.1109/TDMR.2010.2050692
    [3]
    Chai Changchun, Xi Xiaowen, Ren Xingrong, et al. The damage effect and mechanism of the bipolar transistor induced by the intense electromagnetic pulse[J]. Acta Physica Sinica, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [4]
    Wang Haiyang, Li Jiayin, Li Hao, et al. Experimental study and SPICE simulation of CMOS inverters latch-up effects due to high power microwave interference[J]. Prog Electromagn Res, 2008, 87: 313-330.
    [5]
    Mansson D, Thottappillil R, Backstrom M, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Trans Electromagn Compat, 2008, 50(1): 434-437.
    [6]
    You Hailong, Lan Jianchun, Fan Juping, et al. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave[J]. Acta Physica Sinica, 2012, 61: 108501. doi: 10.7498/aps.61.108501
    [7]
    Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwave: summary of test experience[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 396-403. doi: 10.1109/TEMC.2004.831814
    [8]
    Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 380-387. doi: 10.1109/TEMC.2004.831842
    [9]
    Li P, Liu Guozhi, Huang Wenhua, et al. The mechanism of HPM pulse-duration damage effect on semiconductor component[J]. High Power Laser and Particle Beams, 2001, 13(3): 353-356. http://www.hplpb.com.cn/article/id/1626
    [10]
    Fan Juping, Zhang Ling, Jia Xinzhang. HPM damage mechanism on bipolar transistors[J]. High Power Laser and Particle Beams, 2010, 22(6): 1319-1322. doi: 10.3788/HPLPB20102206.1319
    [11]
    Ma Zhenyang, Chai Changchun, Ren Xingrong, et al. The damage effect and mechanism of the bipolar transistor caused by microwaves[J]. Acta Physica Sinica, 2012, 61: 078501. doi: 10.7498/aps.61.078501
    [12]
    Ren Xingrong, Chai Changchun, Ma Zhenyang, et al. The damage effect and mechanism of bipolar transistors induced by injection of electromagnetic pulse from the base[J]. Acta Physica Sinica, 2013, 62: 068501. doi: 10.7498/aps.62.068501
    [13]
    Chai Changchun, Zhang Bing, Ren Xingrong, et al. Injection damage of the integrated silicon low-noise amplifier[J]. J Xidian Univ, 2010, 37(5): 898-903.
    [14]
    Chai Changchun, Yang Yintang, Zhang Bing, et al. Mechanism of energy-injection damage of silicon bipolar low-noise amplifiers[J]. Semicond Sci Technol, 2008, 29: 035003.
    [15]
    2004 ISE-TCAD Dessis simulation user's manual[M]. Zurich: Integrated Systems Engineering Corp, 2004.
    [16]
    Radasky W A. Protection of commercial installations from the high-frequency electromagnetic threats of HEMP and IEMI using IEC standards[C]//Asia-Pacific Symposium on Electromagnetic Compatibility. 2010: 758-761.
    [17]
    Jayant B B, Ghandhi S K. Analytical solutions for the breakdown voltage of abrupt cylindrical and spherical junctions[J]. Solid State Electronics, 1976, 19(9): 739-744. doi: 10.1016/0038-1101(76)90152-0
    [18]
    Wunsch D C, Bell R R. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages[J]. IEEE Trans Nucl Sci, 1968, 15(6): 244-259. doi: 10.1109/TNS.1968.4325054
    [19]
    Tasca D M. Pulse power failure modes in semiconductors[J]. IEEE Trans Nucl Sci, 1970, 17(6): 364-372. doi: 10.1109/TNS.1970.4325819
    [20]
    Brown W D. Semiconductors device degradation by high amplitude current pulses[J]. IEEE Trans Nucl Sci, 1972, 19(6): 68-75. doi: 10.1109/TNS.1972.4326810
  • Relative Articles

    [1]Zhang Zhiguang, Yang Huizhen, Liu Jinlong, Li Songheng, Su Hang, Luo Yuxiang, Wei Xiewen. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33(8): 081004. doi: 10.11884/HPLPB202133.210295
    [2]Li Ziqiang, Li Xinyang, Gao Zeyu, Jia Qiwang. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 081001. doi: 10.11884/HPLPB202133.210158
    [3]Wei Haobo, Dai Wanjun, Wang De’en, Yuan Qiang, Xue Qiao, Zhang Xin, Yang Ying, Zhao Junpu, Wei Xiaofeng, Hu Dongxia. Coupling correcting system with double deformable mirrors and double Hartman-Shack sensors[J]. High Power Laser and Particle Beams, 2017, 29(08): 081003. doi: 10.11884/HPLPB201729.170091
    [4]Xiang Rujian, Du Yinglei, Xu Honglai, Li Guohui, Wu Jing, Zhang Kai. Phase aberration correcting of a slab MOPA solid state laser with combined deformable mirrors[J]. High Power Laser and Particle Beams, 2015, 27(07): 071009. doi: 10.11884/HPLPB201527.071009
    [5]Chang Yan, Zhou Zhiqiang, Lü Yang, Yuan Xuewen, Xie Chuanlin. Design of embedded wavefront process and control system[J]. High Power Laser and Particle Beams, 2013, 25(S0): 67-70.
    [6]Lei Xiang, Dong Lizhi, Yang Ping, Yan Hu, Liu Wenjin, Wang Shuai, Xu Bing. Diagnostic method of wavefront aberration for gain mediums in slab lasers[J]. High Power Laser and Particle Beams, 2012, 24(07): 1651-1655.
    [7]han liqiang, wang qi, shida katsunori, li zhiquan. Improving fiber coupling efficiency of free space optical communication using blind optimization wavefront correction[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [8]ma huimin, zhang pengfei, zhang jinghui, fan chengyu, wang yingjian. Stochastic parallel gradient descent algorithm for adaptive optics system[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [9]xie na, wang xiaodong, hu dongxia, dai wanjun, sun li, li qing, guo yi. Experimental study on wavefront correction in ultra-short laser facility[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [10]yang yuqiang, tan liying, ma jing. Effects of localized deformation on acquisition precision in inter-satellite laser communications[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [11]xiang jing-song, yao zhou-shi, hu yu. Tracking algorithms for coupling space light distorted by turbulence into single mode fiber[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [12]li you kuan, chen dong quan, du xiang wan. Atmospheric scintillation effect on adaptive optics correction[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [13]li xin-yang, jiang wen-han. Zernike modal wavefront reconstruction error of Hartmann sensor on measuring the atmosphere disturbed wavefront[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
    [14]liu tian hua, jiang zong fu, xu xiao jun, liu ze jin, zhao yi jun. Preliminary study on the compensation of the wavefront deformation inducedby freevortex aerodynamic window using AO system[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [15]shen feng, jiang wen-han. Closed-loop transferring characteristics of shack-hartmann wavefront sensor noise in adaptive optical system[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- .
    [16]wan min, su yi, xiang ru-jian. Turbulence-induced low order aberrations of optical wavefronts in partial adaptive compensation with rayleigh beacon or sodium beacon[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
    [19]li xinyang, jiang wenhan, wang chunhong, xian hao. POWER SPECTRA DENSITY METHOD FOR CONTROL EFFECT ANALYSIS OF ADAPTIVE OPTICS SYSTEM[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- .
  • Cited by

    Periodical cited type(17)

    1. 张建磊,张友为,华丹琪,窦雨昂,党鹏涛. 动态水下环境无线光通信自适应合并接收技术. 光学学报. 2025(02): 169-179 .
    2. 高晓梅,舒玉婷,梁静远,王慧琴,赵黎,宋鹏,柯熙政. 通信激光器及其调制技术研究进展. 光通信研究. 2024(02): 92-103 .
    3. 柯程虎,陈明惠,梁静远,赵黎,王惠琴,王怡,柯熙政. OWC/RF混合通信系统研究进展. 应用光学. 2024(02): 237-248 .
    4. 李征,韩旭,柯熙政. 无线光通信一对多发射天线研究进展. 激光杂志. 2024(04): 1-15 .
    5. 冯灵霞,张亚娟,刘寒冰. 云计算智能嵌入式技术下光通信网络路由的研究. 激光杂志. 2024(06): 185-189 .
    6. 梁静远,庞明志,柯熙政. 无线光通信中大气湍流抑制方法. 电子测量与仪器学报. 2024(11): 1-14 .
    7. 陈铭杰,毕凯峰,黄潜. 基于光纤供能的双网融合通信恶意数据识别系统. 激光杂志. 2023(03): 170-174 .
    8. 梁静远,王醒醒,李征,张晓丹,宋鹏,赵黎,柯熙政. 水下无线光通信中关键技术的研究与进展. 数字海洋与水下攻防. 2023(02): 215-240 .
    9. 胡恢军,周菁菁,邓锋. 无线光通信系统多路信号串扰自适应抑制方法. 激光杂志. 2023(06): 177-181 .
    10. 杨尚君,梁静远,吴加丽,柯熙政. 逆向传输标定法校正自适应光学非共光路像差. 光学学报. 2023(12): 102-112 .
    11. 梁静远,林水清,韩美苗,宋鹏,赵黎,柯熙政. 自适应光学中的模式法. 现代应用物理. 2023(02): 21-36 .
    12. 柯熙政,梁静远,许东升,王佳帆. 无线光通信类脉冲位置调制技术研究进展. 光电工程. 2022(03): 3-21 .
    13. 张建磊,和晗昱,聂欢,邱晓芬,李佳琪,杨祎,贺锋涛. 各向异性海洋湍流DHPIM无线光通信性能分析. 光子学报. 2022(04): 87-99 .
    14. 梁静远,亢维龙,董壮,柯熙政,董可. 自由空间光通信系统光学天线技术研究进展. 光通信技术. 2022(04): 1-10 .
    15. 高晓梅,邢甜,高婉倩,董可,柯熙政. 无线光相干通信及其实验研究. 光通信技术. 2022(04): 37-45 .
    16. 梁静远,李梦茹,王佳帆,柯熙政. 无线光通信系统纠错编码研究进展. 物联网学报. 2022(03): 23-36 .
    17. 杨佳辉,张艳,肖晗,张子睿,顾子健,张云哲. 涡旋光干涉衍射综合试验仪的设计与制造. 大学物理实验. 2022(03): 90-93 .

    Other cited types(28)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.1 %FULLTEXT: 26.1 %META: 69.2 %META: 69.2 %PDF: 4.7 %PDF: 4.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.1 %其他: 5.1 %其他: 1.4 %其他: 1.4 %Brazil: 0.1 %Brazil: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 1.3 %China: 1.3 %Cordova: 0.1 %Cordova: 0.1 %Estonia: 0.1 %Estonia: 0.1 %Falls Church: 0.1 %Falls Church: 0.1 %France: 0.4 %France: 0.4 %Germany: 0.1 %Germany: 0.1 %India: 0.2 %India: 0.2 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Japan: 0.1 %Japan: 0.1 %Kao-sung: 0.1 %Kao-sung: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Malvern: 0.1 %Malvern: 0.1 %Morocco: 0.1 %Morocco: 0.1 %Saitama: 0.1 %Saitama: 0.1 %Switzerland: 0.0 %Switzerland: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.9 %[]: 0.9 %三门峡: 0.0 %三门峡: 0.0 %上海: 1.5 %上海: 1.5 %东莞: 0.3 %东莞: 0.3 %中卫: 0.1 %中卫: 0.1 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %九江: 0.0 %九江: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %休斯敦: 0.1 %休斯敦: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %列克星敦: 0.1 %列克星敦: 0.1 %包头: 0.1 %包头: 0.1 %北京: 5.1 %北京: 5.1 %北阿坎德: 0.1 %北阿坎德: 0.1 %南京: 1.0 %南京: 1.0 %南京市栖霞区: 0.1 %南京市栖霞区: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南阳: 0.0 %南阳: 0.0 %厦门: 0.2 %厦门: 0.2 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.2 %合肥: 0.2 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %嘉峪关: 0.1 %嘉峪关: 0.1 %埃克塞特: 0.1 %埃克塞特: 0.1 %堪培拉: 0.0 %堪培拉: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %威斯康辛州: 0.0 %威斯康辛州: 0.0 %娄底: 0.1 %娄底: 0.1 %孟买: 0.1 %孟买: 0.1 %宁波: 0.1 %宁波: 0.1 %安庆: 0.0 %安庆: 0.0 %安康: 0.5 %安康: 0.5 %宜宾: 0.0 %宜宾: 0.0 %宣城: 0.2 %宣城: 0.2 %宿迁: 0.0 %宿迁: 0.0 %密蘇里城: 0.1 %密蘇里城: 0.1 %常州: 0.0 %常州: 0.0 %常德: 0.0 %常德: 0.0 %广州: 0.6 %广州: 0.6 %庆阳: 0.0 %庆阳: 0.0 %延安: 0.1 %延安: 0.1 %开封: 0.7 %开封: 0.7 %弗吉尼亚州: 0.2 %弗吉尼亚州: 0.2 %张家口: 1.5 %张家口: 1.5 %张家界: 0.1 %张家界: 0.1 %徐州: 0.0 %徐州: 0.0 %成都: 1.3 %成都: 1.3 %戴利城: 0.2 %戴利城: 0.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.0 %新乡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %昌吉: 0.0 %昌吉: 0.0 %晋中: 0.1 %晋中: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.1 %杭州: 1.1 %柳州: 0.1 %柳州: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %榆林: 0.0 %榆林: 0.0 %武汉: 0.5 %武汉: 0.5 %毕节: 0.0 %毕节: 0.0 %江门: 0.1 %江门: 0.1 %沃特福德: 0.2 %沃特福德: 0.2 %沈阳: 0.3 %沈阳: 0.3 %河池: 0.1 %河池: 0.1 %泉州: 0.0 %泉州: 0.0 %法尔肯施泰因: 0.5 %法尔肯施泰因: 0.5 %济南: 0.1 %济南: 0.1 %海口: 0.0 %海口: 0.0 %淄博: 0.1 %淄博: 0.1 %淮北: 0.1 %淮北: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 1.0 %深圳: 1.0 %温州: 0.3 %温州: 0.3 %渭南: 0.1 %渭南: 0.1 %漯河: 0.7 %漯河: 0.7 %澄迈: 0.0 %澄迈: 0.0 %烟台: 0.0 %烟台: 0.0 %玉林: 0.1 %玉林: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %白城: 0.1 %白城: 0.1 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.0 %纽约: 0.0 %绵阳: 0.3 %绵阳: 0.3 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %自贡: 0.1 %自贡: 0.1 %芒廷维尤: 22.3 %芒廷维尤: 22.3 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.8 %苏州: 0.8 %荆门: 0.1 %荆门: 0.1 %菏泽: 0.0 %菏泽: 0.0 %蔚山: 0.1 %蔚山: 0.1 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 32.6 %西宁: 32.6 %西安: 3.3 %西安: 3.3 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.0 %达州: 0.0 %运城: 0.7 %运城: 0.7 %连云港: 0.2 %连云港: 0.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %鄂尔多斯: 0.0 %鄂尔多斯: 0.0 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.4 %重庆: 0.4 %金华: 0.1 %金华: 0.1 %金奈: 0.1 %金奈: 0.1 %金昌: 0.0 %金昌: 0.0 %锡林郭勒盟: 0.0 %锡林郭勒盟: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.4 %长春: 0.4 %长沙: 0.4 %长沙: 0.4 %长治: 0.1 %长治: 0.1 %防城港: 0.1 %防城港: 0.1 %阳泉: 0.0 %阳泉: 0.0 %阿什本: 0.1 %阿什本: 0.1 %阿坝: 0.1 %阿坝: 0.1 %雷德蒙德: 0.0 %雷德蒙德: 0.0 %青岛: 0.3 %青岛: 0.3 %首尔特别: 0.0 %首尔特别: 0.0 %香港: 0.2 %香港: 0.2 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马赛: 0.3 %马赛: 0.3 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他其他BrazilCentral DistrictChinaCordovaEstoniaFalls ChurchFranceGermanyIndiaIran (ISLAMIC Republic Of)JapanKao-sungKorea Republic ofMalvernMoroccoSaitamaSwitzerlandUnited States[]三门峡上海东莞中卫中山临汾丹东九江亚特兰大休斯敦佛山保定列克星敦包头北京北阿坎德南京南京市栖霞区南宁南昌南阳厦门台北台州台湾省合肥吉林呼和浩特咸阳哈尔滨哥伦布嘉兴嘉峪关埃克塞特堪培拉大连天津太原威斯康辛州娄底孟买宁波安庆安康宜宾宣城宿迁密蘇里城常州常德广州庆阳延安开封弗吉尼亚州张家口张家界徐州成都戴利城扬州新乡无锡昆明昌吉晋中晋城普洱朝阳杭州柳州格兰特县桂林榆林武汉毕节江门沃特福德沈阳河池泉州法尔肯施泰因济南海口淄博淮北淮安深圳温州渭南漯河澄迈烟台玉林班加罗尔白城石家庄福州秦皇岛纽约绵阳美国伊利诺斯芝加哥自贡芒廷维尤芝加哥苏州荆门菏泽蔚山蚌埠衡水衡阳衢州襄阳西宁西安诺沃克贵阳达州运城连云港邯郸郑州鄂尔多斯鄂州重庆金华金奈金昌锡林郭勒盟镇江长春长沙长治防城港阳泉阿什本阿坝雷德蒙德青岛首尔特别香港香港特别行政区马赛黄冈齐齐哈尔龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1138) PDF downloads(81) Cited by(45)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return