Volume 30 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
Wang Wenbing, Zhou Hui, Ma Liang, et al. Stability analysis and improvement of conformal leapfrog alternating direction implicit finite-difference time-domain method[J]. High Power Laser and Particle Beams, 2018, 30: 073205. doi: 10.11884/HPLPB201830.170475
Citation: Wang Wenbing, Zhou Hui, Ma Liang, et al. Stability analysis and improvement of conformal leapfrog alternating direction implicit finite-difference time-domain method[J]. High Power Laser and Particle Beams, 2018, 30: 073205. doi: 10.11884/HPLPB201830.170475

Stability analysis and improvement of conformal leapfrog alternating direction implicit finite-difference time-domain method

doi: 10.11884/HPLPB201830.170475
  • Received Date: 2017-11-24
  • Rev Recd Date: 2018-03-24
  • Publish Date: 2018-07-15
  • A conformal leapfrog alternating direction implicit finite-difference time-domain (CLeapfrog ADI-FDTD) method based on conformal technique was proposed in the article. Compared with the conventional FDTD method, the proposed method decreased the step approximation error, it was used to simulate the irregular object whose boundary couldn't match the orthogonal grid; at the same time, this method could have a high efficiency because leapfrog alternating direction implicit finite-difference time-domain (Leapfrog ADI-FDTD) is a method with unconditional stability. However, CLeapfrog ADI-FDTD method may lose the stability expected with the Leapfrog ADI-FDTD schemes, and instability factor in CLeapfrog ADI-FDTD was analyzed through eigenvalue of the growth matrix, then a new method named improved conformal leapfrog alternating direction implicit finite-difference time-domain (ICLeapfrog ADI-FDTD) with a modified conformal technique was proposed, which could improve the stability without losing the calculation accuracy. The accuracy and efficiency of the proposed ICLeapfrog ADI-FDTD method were verified by numerical results.
  • loading
  • [1]
    葛德彪, 闫玉波. 电磁波时域有限差分法[M]. 3版. 西安: 西安电子科技大学出版社, 2011: 1-27.

    Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves. 3rd ed. Xi'an: Xidian University Press, 2011: 1-27
    [2]
    白剑. FDTD在若干电磁问题中应用的研究[D]. 西安: 西安电子科技大学, 2007: 1-45.

    Bai Jian. Research on the applications of FDTD for the analysis of the electromagnetic problems. Xi'an: Xidian University, 2007: 1-45
    [3]
    刘宗信, 陈亦望, 徐鑫, 等. 三维周期结构弱无条件稳定时域有限差分算法[J]. 强激光与粒子束, 2012, 24(11): 2687-2692. doi: 10.3788/HPLPB20122411.2687

    Liu Zong-xin, Chen Yiwang, Xu Xin, et al. Conformal FDTD mesh-generating technique for objects with triangle-patch model. High Power Laser and Particle Beams, 2012, 24(11): 2687-2692 doi: 10.3788/HPLPB20122411.2687
    [4]
    Cooke S J, Botton M, Antonsen Jr T M, et al. A leapfrog formulation of the 3-D ADI-FDTD algorithm[J]. International Journal of Numerical Modeling, 2009, 22(2): 187-200. doi: 10.1002/jnm.707
    [5]
    Wang Yigang, Chen Bin, Chen Hailin, et al. One step leapfrog ADI-FDTD method in 3-D cylindrical grids with a CPML implementation[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 714-717. doi: 10.1109/LAWP.2014.2315435
    [6]
    Liang Zhuoxian, Xie Hao, Guo Yang, et al. Improved hybrid leapfrog ADI-FDTD method for simulating near-field coupling effects among multiple thin wire monopole antennas on a complex platform[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(2): 618-626. doi: 10.1109/TEMC.2016.2632129
    [7]
    杨利霞, 胡晓娟, 葛德彪. 基于目标三角面元模型生成FDTD共形网格的方法[J]. 强激光与粒子束, 2007, 19(8): 1333-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200708024.htm

    Yang Li-xia, Hu Xiaojuan, Ge Debiao. Conformal FDTD mesh-generating technique for objects with triangle-patch model. High Power Laser and Particle Beams, 2007, 19(8): 1333-1337 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200708024.htm
    [8]
    Dey S, Mittra R, Chebolu S. A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conduction objects[J]. IEEE Microwave Opt Tech Lett, 1997, 7(9): 273-275.
    [9]
    何页. 共形时域有限差分方法的理论研究及其相关应用[D]. 南京: 南京航空航天大学, 2010: 21-55.

    He Ye. Theoretical study and related applications of the conformal finite difference time domain. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 21-55
    [10]
    Kong Yongdan, Chu Qingxin. Efficient unconditionally stable one step leapfrog ADI-FDTD method with low numerical dispersion[J]. IET microwave, antennas & propagation, 2014, 8(5): 337-345.
    [11]
    Dai J, Chen Z, Su D, et al. Stability analysis and improvement of the conformal ADI-FDTD methods[J]. IEEE Trans Antennas and Propagation, 2011, 59(6): 2248-2258. doi: 10.1109/TAP.2011.2143686
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (1359) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return