Yi Qiang, Huang Qiushi, Wang Xiangmei, et al. Narrow-band Si/Mo/C multilayer mirrors working at 13 nm[J]. High Power Laser and Particle Beams, 2016, 28: 122002. doi: 10.11884/HPLPB201628.160440
Citation: Liu Wei, Duan Xiaoxi, Yang Weiming, et al. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30: 052002. doi: 10.11884/HPLPB201830.170478

Molecular dynamics simulations of shock response for nano-structure foamed gold

doi: 10.11884/HPLPB201830.170478
  • Received Date: 2017-11-24
  • Rev Recd Date: 2018-01-23
  • Publish Date: 2018-05-15
  • Different embeded-atom method potentials of gold were used in molecular dynamics simulation for shocked solid gold. Comparison between the simulation results and the experiment data of Hugoniot state for gold has been carried out. The potentials whose corresponding simulating shocked Hugoniot data are consistent with theoretical prediction were used in subsequent foamed gold simulations. The initial configuration of foamed gold has been constructed by means of randomly accumulating sphere shells in the simulation box. Three kinds of configuration have been obtained via changing the thickness, outer-radius of the sphere shell and potentials. Hugoniot states of porous polycrystal gold with 3-dimensional nanostructure under shock compression have been simulated by means of molecular dynamics(MD) method. Comparison between simulated results with porous equation of state(EOS) model and existing EOS database for Au has been done. The discrepancy suggests that experiments for the state of porous gold are necessary to verify the theory and the simulation method for porous gold.
  • [1]
    Hall T, Batani D, Nazarov W, et al. Recent advances in laser-plasma experiments using foams[J]. Laser and Particle Beams, 2002, 20: 303-316. doi: 10.1017/S0263034602202220
    [2]
    Boade R R. Compression of porous copper by shock waves[J]. Journal of Applied Physics, 1968, 39(12): 5693-5702. doi: 10.1063/1.1656034
    [3]
    Rosen M D, Hammer J H. Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss[J]. Physical Review E, 2005, 72: 056403. doi: 10.1103/PhysRevE.72.056403
    [4]
    Young P E, Rosen M D, Hammer J H, et al. Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum[J]. Physical Review Letters, 2008, 101: 035001. doi: 10.1103/PhysRevLett.101.035001
    [5]
    Trunin R F, Zhernokletov M V, Simakov G V, et al. Shock compression of highly porous samples of copper, iron, nickel and their equation of state[C]//Shock Compression of Condense Matter. 1998: 83-86.
    [6]
    Wu Q, Jing F. Unified thermodynamic equation of state for porous materials in a wide pressure range[J]. Applied Physics Letters, 1995, 67(1): 49-51. doi: 10.1063/1.115488
    [7]
    Geng Huayun, Wu Qiang, Tan Hua, et al. Extension of the Wu-Jing equation of state(EOS) for highly porous materials: Thermoelectron based theoretical model[J]. Journal of Applied Physics, 2002, 92(10): 5924-5929. doi: 10.1063/1.1516619
    [8]
    Jian W R, Li B, Wang L, et al. Shock response of open-cell nanoporous Cu foams: Effects of porosity and specific surface area[J]. Journal of Applied Physics, 2015, 118: 165902. doi: 10.1063/1.4934244
    [9]
    Huang L, Han W Z, An Q, et al. Shock-induced consolidation and spallation of Cu nanopowders[J]. Journal of Applied Physics, 2012, 111: 013508. doi: 10.1063/1.3675174
    [10]
    Zhang L, Ding Y, Lin Z, et al. Demonstration of enhancement of X-ray flux with foam gold compared to solid gold[J]. Nuclear Fusion, 2016, 56: 036006. doi: 10.1088/0029-5515/56/3/036006
    [11]
    Plompton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117: 1-19. doi: 10.1006/jcph.1995.1039
    [12]
    Johnson A. Analytic nearest-neighbor model for fcc metals[J]. Physical Review B, 1988, 37(8): 3924-3931. doi: 10.1103/PhysRevB.37.3924
    [13]
    Luo S N, An Q, Germann T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates[J]. Journal of Applied Physics, 2009, 106: 013502. doi: 10.1063/1.3158062
    [14]
    Tan X, Niu G, Li K, et al. Preparation of monolithic foamed gold by seed-mediated growth[J]. Rare Metal Materials and Engineering, 2012, 40(1): 169-172. doi: 10.3969/j.issn.1002-185X.2012.01.038
    [15]
    Olsson P A T. Transverse resonant properties of strained gold nanowires[J]. Journal of Applied Physics, 2010, 108: 034318. doi: 10.1063/1.3460127
    [16]
    Zhakhovskii V V, Inogamov N A, Petrov Y V, et al. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials[J]. Applied Surface Science, 2009, 255: 9592-9596. doi: 10.1016/j.apsusc.2009.04.082
    [17]
    Yokoo M, Kawai N, Nakamura K G, et al. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa[J]. Physical Review B, 2009, 80: 104114. doi: 10.1103/PhysRevB.80.104114
    [18]
    Grochola G, Russo S P, Snook I K. On fitting a gold embedded atom method potential using the force matching method[J]. The Journal of Chemical Physics, 2005, 123: 204719. doi: 10.1063/1.2124667
    [19]
    Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69: 144113. doi: 10.1103/PhysRevB.69.144113
    [20]
    Adams J B, Foiles S M, Wolfer W G. Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method[J]. J Mater Res, 1988, 4(1): 102-112.
    [21]
    Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel[J]. Philosophical Magazine A, 1987, 56(6): 735-756. doi: 10.1080/01418618708204485
    [22]
    Liao Y, Xiang M, Zeng X, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum[J]. Mechanics of Materials, 2015, 84: 12-27. doi: 10.1016/j.mechmat.2015.01.007
    [23]
    Yokoo M, Kawai N, Nakamura K G, et al. Hugoniot measurement of gold at high pressures of up to 580 GPa[J]. Applied Physics Letters, 2008, 92: 051901. doi: 10.1063/1.2840189
    [24]
    Hodge A M, Biener J, Hayes J R, et al. Scaling equation for yield strength of nanoporous open-cell foams[J]. Acta Materialia, 2007, 55: 1343-1349. doi: 10.1016/j.actamat.2006.09.038
  • Relative Articles

    [1]Zhang Ligang, Tan Weibing, Li Xiaoze, Zhu Xiaoxin, Hu Xianggang. Design of high-power TM01 online mode selection coupling device[J]. High Power Laser and Particle Beams, 2025, 37(1): 013006. doi: 10.11884/HPLPB202537.240159
    [2]Xu Liang, Zhang Qiang, Yuan Chengwei, Liu Jinliang, Sun Yunfei, Gong Hongzhou, Liu Dongqi. A high-power microwave reflectarray antenna based onvariable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36(1): 013002. doi: 10.11884/HPLPB202436.230379
    [3]Wang Jianshu, Zheng Kun, Wang Honggang, Ge Xingjun, Yuan Chengwei, Li Jie. Error analysis of microwave power measurement instruments[J]. High Power Laser and Particle Beams, 2018, 30(6): 063006. doi: 10.11884/HPLPB201830.170455
    [4]Zhang Lijun, Chen Changhua, Teng Yan, Sun Jun, Song Zhimin, Zhang Xiaowei, Zhang Zhiqiang. Farfield measurement method of high power microwave in radiation field[J]. High Power Laser and Particle Beams, 2016, 28(05): 053002. doi: 10.11884/HPLPB201628.053002
    [5]Li Yimin, Xing Jianquan, Wang Lan. High power microwave measurement based on microwave photonics[J]. High Power Laser and Particle Beams, 2016, 28(03): 033028. doi: 10.11884/HPLPB201628.033028
    [6]Liu Qian, Wang Li, Yan Ran. De-embedding technology of Gyro-TWT output window single port measurement[J]. High Power Laser and Particle Beams, 2014, 26(12): 123002. doi: 10.11884/HPLPB201426.123002
    [7]Zhou Dongfang, Yu Daojie, Ning Hui, Ma Hongge, Chen Changhua, Lin Jingyu, Wei Jinjin, Hou Deting, Hu Tao, Yang Jianhong, Rao Yuping, Wang Liping, Han Chen, Xia Wei. Area distribution of HPM air-breakdown[J]. High Power Laser and Particle Beams, 2014, 26(06): 063026. doi: 10.11884/HPLPB201426.063026
    [8]Wei Jifeng, Zhang Wei, He Junzhang, Zhou Shan, Peng Yong, Hu Xiaoyang, Sun Liqun, Zhang Kai. Calibration methods and calibration systems of water-absorption-type high energy laser energy meters[J]. High Power Laser and Particle Beams, 2014, 26(12): 120201. doi: 10.11884/HPLPB201426.120201
    [9]Deng Chaoping, Hou Deting, Zhou Dongfang, Wang Liping, Peng Qiang, Qin Yang. Spatial power combining of close-packed antenna arrays of high power microwave[J]. High Power Laser and Particle Beams, 2013, 25(02): 436-440. doi: 10.3788/HPLPB20132502.0436
    [10]Jiang Zhixiong, Wei Jifeng, Zhou Wenchao. Application of ray tracing method to design of high-energy-laser calorimeter[J]. High Power Laser and Particle Beams, 2013, 25(S0): 1-4.
    [11]zhang zhiqiang, fang jinyong, li jiawei, huang huijun, wang kangyi, song zhimin, huang wenhua, jiao yongchang. X-band high power microwave TE11 mode circular polarizer[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [12]zhang zhiqiang, wang hongjun, zhang lijun, zhang yuchuan. Development of array device for power measurement of high power microwave radiation field[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [13]yuan chengwei, zhong huihuang, qian baoliang. Design of bend circular waveguides for high-power microwave applications[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [14]zhang ligang, ning hui, shao hao, chen changhua, song zhimin. Numerical simulation for characteristics of open-ended rectangular waveguide[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- .
    [15]wei ji-feng, zhang kai, zhou shan, guan you-guang. Calibration of high energy laser calorimeter[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [16]zhang jia-yan, shu ting, yuan cheng-wei. Primary study on spatial powers combining of parallel and intersectant beams of high power microwave[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [17]qu jin, liu qing xiang, hu jin guang, yu chuan. Measurement system on power density of high power microwave radiation[J]. High Power Laser and Particle Beams, 2004, 16(01): 0- .
    [18]shu ting, wang yong, li ji jian, xi feng. Measurement of high power microwaves in the farfield zones[J]. High Power Laser and Particle Beams, 2003, 15(05): 0- .
    [19]li shao-fu, ding wu. A high power microwave radial klystron oscillator with foldaway concentric cylinder resonant cavity[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- .
    [20]huang wen-hua, liu jing-yue, fan ju-ping, chen chang-hua, hu yong-mei, song zhi-min, ning hui. New type of high power microwave detector[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.1 %FULLTEXT: 22.1 %META: 76.1 %META: 76.1 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.0 %其他: 3.0 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %[]: 0.3 %[]: 0.3 %上海: 0.7 %上海: 0.7 %东京: 0.4 %东京: 0.4 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %内江: 0.1 %内江: 0.1 %北京: 16.9 %北京: 16.9 %南京: 0.3 %南京: 0.3 %台州: 0.1 %台州: 0.1 %天津: 0.4 %天津: 0.4 %常州: 0.3 %常州: 0.3 %广州: 1.1 %广州: 1.1 %张家口: 0.2 %张家口: 0.2 %成都: 0.1 %成都: 0.1 %新乡: 0.1 %新乡: 0.1 %昆明: 0.2 %昆明: 0.2 %普洱: 0.1 %普洱: 0.1 %杭州: 1.1 %杭州: 1.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.1 %武汉: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 0.2 %漯河: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 13.5 %芒廷维尤: 13.5 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 56.1 %西宁: 56.1 %西安: 0.4 %西安: 0.4 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.8 %郑州: 0.8 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.1 %青岛: 0.1 %其他ChinaIndia[]上海东京中山临汾丹东内江北京南京台州天津常州广州张家口成都新乡昆明普洱杭州桂林武汉洛阳深圳温州渭南湖州漯河福州秦皇岛绵阳芒廷维尤芝加哥苏州衢州西宁西安运城邯郸郑州重庆长沙长治阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (1167) PDF downloads(258) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return