Citation: | Liu Wei, Duan Xiaoxi, Yang Weiming, et al. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30: 052002. doi: 10.11884/HPLPB201830.170478 |
[1] |
Hall T, Batani D, Nazarov W, et al. Recent advances in laser-plasma experiments using foams[J]. Laser and Particle Beams, 2002, 20: 303-316. doi: 10.1017/S0263034602202220
|
[2] |
Boade R R. Compression of porous copper by shock waves[J]. Journal of Applied Physics, 1968, 39(12): 5693-5702. doi: 10.1063/1.1656034
|
[3] |
Rosen M D, Hammer J H. Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss[J]. Physical Review E, 2005, 72: 056403. doi: 10.1103/PhysRevE.72.056403
|
[4] |
Young P E, Rosen M D, Hammer J H, et al. Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum[J]. Physical Review Letters, 2008, 101: 035001. doi: 10.1103/PhysRevLett.101.035001
|
[5] |
Trunin R F, Zhernokletov M V, Simakov G V, et al. Shock compression of highly porous samples of copper, iron, nickel and their equation of state[C]//Shock Compression of Condense Matter. 1998: 83-86.
|
[6] |
Wu Q, Jing F. Unified thermodynamic equation of state for porous materials in a wide pressure range[J]. Applied Physics Letters, 1995, 67(1): 49-51. doi: 10.1063/1.115488
|
[7] |
Geng Huayun, Wu Qiang, Tan Hua, et al. Extension of the Wu-Jing equation of state(EOS) for highly porous materials: Thermoelectron based theoretical model[J]. Journal of Applied Physics, 2002, 92(10): 5924-5929. doi: 10.1063/1.1516619
|
[8] |
Jian W R, Li B, Wang L, et al. Shock response of open-cell nanoporous Cu foams: Effects of porosity and specific surface area[J]. Journal of Applied Physics, 2015, 118: 165902. doi: 10.1063/1.4934244
|
[9] |
Huang L, Han W Z, An Q, et al. Shock-induced consolidation and spallation of Cu nanopowders[J]. Journal of Applied Physics, 2012, 111: 013508. doi: 10.1063/1.3675174
|
[10] |
Zhang L, Ding Y, Lin Z, et al. Demonstration of enhancement of X-ray flux with foam gold compared to solid gold[J]. Nuclear Fusion, 2016, 56: 036006. doi: 10.1088/0029-5515/56/3/036006
|
[11] |
Plompton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117: 1-19. doi: 10.1006/jcph.1995.1039
|
[12] |
Johnson A. Analytic nearest-neighbor model for fcc metals[J]. Physical Review B, 1988, 37(8): 3924-3931. doi: 10.1103/PhysRevB.37.3924
|
[13] |
Luo S N, An Q, Germann T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates[J]. Journal of Applied Physics, 2009, 106: 013502. doi: 10.1063/1.3158062
|
[14] |
Tan X, Niu G, Li K, et al. Preparation of monolithic foamed gold by seed-mediated growth[J]. Rare Metal Materials and Engineering, 2012, 40(1): 169-172. doi: 10.3969/j.issn.1002-185X.2012.01.038
|
[15] |
Olsson P A T. Transverse resonant properties of strained gold nanowires[J]. Journal of Applied Physics, 2010, 108: 034318. doi: 10.1063/1.3460127
|
[16] |
Zhakhovskii V V, Inogamov N A, Petrov Y V, et al. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials[J]. Applied Surface Science, 2009, 255: 9592-9596. doi: 10.1016/j.apsusc.2009.04.082
|
[17] |
Yokoo M, Kawai N, Nakamura K G, et al. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa[J]. Physical Review B, 2009, 80: 104114. doi: 10.1103/PhysRevB.80.104114
|
[18] |
Grochola G, Russo S P, Snook I K. On fitting a gold embedded atom method potential using the force matching method[J]. The Journal of Chemical Physics, 2005, 123: 204719. doi: 10.1063/1.2124667
|
[19] |
Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69: 144113. doi: 10.1103/PhysRevB.69.144113
|
[20] |
Adams J B, Foiles S M, Wolfer W G. Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method[J]. J Mater Res, 1988, 4(1): 102-112.
|
[21] |
Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel[J]. Philosophical Magazine A, 1987, 56(6): 735-756. doi: 10.1080/01418618708204485
|
[22] |
Liao Y, Xiang M, Zeng X, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum[J]. Mechanics of Materials, 2015, 84: 12-27. doi: 10.1016/j.mechmat.2015.01.007
|
[23] |
Yokoo M, Kawai N, Nakamura K G, et al. Hugoniot measurement of gold at high pressures of up to 580 GPa[J]. Applied Physics Letters, 2008, 92: 051901. doi: 10.1063/1.2840189
|
[24] |
Hodge A M, Biener J, Hayes J R, et al. Scaling equation for yield strength of nanoporous open-cell foams[J]. Acta Materialia, 2007, 55: 1343-1349. doi: 10.1016/j.actamat.2006.09.038
|
[1] | Ren Sanhai, Peng Kai, Tan Qian, Ye Xin, Fang Jinyong. Numerical simulation on spacecraft chargingdue to electron beam emission[J]. High Power Laser and Particle Beams, 2024, 36(1): 014002. doi: 10.11884/HPLPB202436.230366 |
[2] | Fu Yingjie, Dong Luokang, Qin Shenyi, He Mengbing, Ye Mingtian, Wang Zhen, Li Zhenghong. Operating characteristics of electrically triggered vacuum surface flashover switch[J]. High Power Laser and Particle Beams, 2024, 36(11): 115003. doi: 10.11884/HPLPB202436.240325 |
[3] | Chen Jianfei, Zhou Hongtao, Fang Meihua, Wu Kang, Song Dingyi. Geostationary orbital proton energy spectrum inversion based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35(10): 104002. doi: 10.11884/HPLPB202335.230149 |
[4] | Zhuang Yue, Liu Feng, Chu Haijing, Fang Zhi. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2021, 33(6): 065017. doi: 10.11884/HPLPB202133.210021 |
[5] | Fang Qingyuan, Wang Tong, Ji Qizheng, Feng Na, Liu Weidong. Analysis of spacecraft charging onset using secondary electron yield[J]. High Power Laser and Particle Beams, 2021, 33(2): 023007. doi: 10.11884/HPLPB202133.200149 |
[6] | Song Weizhang, Dai Zhihao, Sun Xiangdong, Yan Hua, Wu Fengjun, Gao Daqing, Wang Youyun. Hybrid control method to suppress neutral-point voltage fluctuation for three-phase three-level VIENNA rectifier[J]. High Power Laser and Particle Beams, 2019, 31(4): 040016. doi: 10.11884/HPLPB201931.180386 |
[7] | Hu Xiaofeng, Zhang Jianping, Xu Bin. Progress of the research of space electrostatic effect of spacecraft[J]. High Power Laser and Particle Beams, 2019, 31(10): 103202. doi: 10.11884/HPLPB201931.190247 |
[8] | Wen Shuwen, Gao Yang, Xu Xiaxi. Grounding via-hole effect pre-considered microstrip interdigital filter design[J]. High Power Laser and Particle Beams, 2018, 30(8): 084101. doi: 10.11884/HPLPB201830.180093 |
[9] | Dai Yinsong, Zhang Xijun, Yuan Qingyun. Effect of initial potential on surface attenuation characteristics of dielectric materials under electron irradiation[J]. High Power Laser and Particle Beams, 2017, 29(11): 113204. doi: 10.11884/HPLPB201729.170215 |
[10] | Lv Qing’ao, Wang Weigang, Xing Yanchang, Xiang Hongjun, Zhang Qian. Effect of ferromagnetism material on current distribution in copper strips for electromagnetic railguns[J]. High Power Laser and Particle Beams, 2015, 27(10): 103253. doi: 10.11884/HPLPB201527.103253 |
[11] | Ma Xiaobo, Jiang Huanqi, Chen Dezhen. Surface temperature distributions of the slab materials with two cylindrical defects[J]. High Power Laser and Particle Beams, 2015, 27(11): 119003. doi: 10.11884/HPLPB201527.119003 |
[12] | Zuo Yinghong, Wang Jianguo, Luo Xudong, Wei Yuan. Spacecraft surface charging effect of plasma in bi-Maxwellian distribution[J]. High Power Laser and Particle Beams, 2015, 27(11): 114003. doi: 10.11884/HPLPB201527.114003 |
[13] | Tian Ailing, Tian Yujun, Wang Chunhui, Pan Yongqiang, Wang Hongjun, Liu Bingcai, Zhu Xueliang. Scattering characteristics of focused light beam in medium with subsurface damage[J]. High Power Laser and Particle Beams, 2014, 26(09): 091021. doi: 10.11884/HPLPB201426.091021 |
[14] | Chen Chuan, Wang Hongbin, Wu Weidong, Peng Liping, Fang Qi. Oxidation of Nb3Ge surface[J]. High Power Laser and Particle Beams, 2013, 25(09): 2307-2312. doi: 10.3788/HPLPB20132509.2307 |
[15] | Cheng Guoxin, Yuan Chengwei, Liu Lie. Non-destructive measurement of complex permittivity of dielectric slabs[J]. High Power Laser and Particle Beams, 2013, 25(08): 2045-2049. doi: 10.3788/HPLPB20132508.2045 |
[16] | jiang Hui, Zhang Cheng, Shao Tao, Che Xueke, Zhang Dongdong, Xu Rong, Yan Ping. Experimental study on characteristics of nanosecond-pulse surface dielectric barrier discharge[J]. High Power Laser and Particle Beams, 2012, 24(03): 592-596. doi: 10.3788/HPLPB20122403.0592 |
[17] | he wusheng, mao genwang, chen maolin, sun anbang. Attenuation effect of electric thruster plasma jet on spacecraft communication signals[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- . |
[18] | yang li, tang jun-ping, qiu ai-ci, huang jian-jun, zhang yong-min, ren shu-qing. Surface charge characteristics on insulators in vacuum under nanosecond pulse excitation[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- . |
[19] | lu da-ju, wan min, yang rui, leng jie, zheng jie, zou kai. Reflectivity of measurement of spatial target’s surface material[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- . |
[20] | zhang xi-bo, su jian-cang, peng jian-chang, song xiao-xin, wang li-min, pan ya-feng. Secondary winding potential distribution of Tesla transformer[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- . |
1. | 张聪惠,薛少博,肖桂枝,颜学柏,舒滢. 微米级稀有金属箔材研究现状. 材料导报. 2020(13): 13139-13145 . ![]() |