Citation: | Chen Lelin, Wei Biao, Li Pengcheng, et al. 252Cf-source-driven nuclear material concentration identification based on deep learning[J]. High Power Laser and Particle Beams, 2018, 30: 096001. doi: 10.11884/HPLPB201830.170487 |
[1] |
刘成安, 伍钧. 核军备控制核查技术概论[M]. 北京: 国防工业出版社, 2007: 26-40.
Liu Cheng'an, Wu Jun. Nuclear arms control and verification technology concept. Beijing: National Defense Industry Press, 2007: 26-40
|
[2] |
Mihalczo J T, Valentine T E, Mullens J A, et al. Physical and mathematical description of nuclear weapons identification system(NWIS) signatures[R]. The US Department of Energy Report No. Y/LB-15, 1997.
|
[3] |
Mattingly J K, Valentine T E, Mihalczo J T. NWIS measurements for uranium metal annular castings[R]. The US Department of Energy Report No. Y/LB-15, 1998.
|
[4] |
冯鹏, 刘思远, 米德伶. 基于Elman神经网络的252Cf源和系统随机中子脉冲信号识别方法[J]. 强激光与粒子束, 2011, 23(8): 2224-2228. http://www.hplpb.com.cn/article/id/5395
Feng Peng, Liu Siyuan, Mi Deling. Identification of stochastic neutron pulse signal of 252Cf nuclear system based on Elman neural network. High Power Laser and Particle Beams, 2011, 23(8): 2224-2228 http://www.hplpb.com.cn/article/id/5395
|
[5] |
杨帆, 魏彪, 冯鹏, 等. 互相关及高阶谱核材料富集度识别方法[J]. 强激光与粒子束, 2013, 25(4): 1026-1030. http://www.hplpb.com.cn/article/id/7415
Yang Fan, Wei Bao, Feng Peng, et al. Nuclear material enrichment identification method based on cross-correlation and high order spectra. High Power Laser and Particle Beams, 2013, 25(4): 1026-1030 http://www.hplpb.com.cn/article/id/7415
|
[6] |
李鹏程, 魏彪, 冯鹏, 等. 基于压缩感知的252Cf源驱动核材料浓度识别技术研究[J]. 强激光与粒子束, 2015, 27: 074004. doi: 10.11884/HPLPB201527.074004
Li Pengcheng, Wei Biao, Feng Peng, et al. 252Cf-source-driven nuclear material concentration identification based on compressive sensing. High Power Laser and Particle Beams, 2105, 27: 074004 doi: 10.11884/HPLPB201527.074004
|
[7] |
李玉鑑, 张婷. 深度学习导论及案例分析[M]. 北京: 机械工业出版社, 2016: 1-116.
Li Yujian, Zhang Ting. Introduction to depth learning and case analysis. Beijing: China Machine Press, 2016: 1-116
|
[8] |
Song I, Kimht J, Jeon P B. Deep learning for real-time robust facial expression recognition on a smart phone[C]//Proceedings of the 2014 IEEE International Conference on Consumer Electronics. 2014: 564-567.
|
[9] |
Mesnil G, Dauphin Y, Yao K, et al. Using recurrent neural networks for slot filling in spoken language understanding[J]. IEEE Trans on Audio Speech and Language Processing, 2105, 23(3): 530-539.
|
[10] |
Dahl G E, Yu D, Deng L, et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Trans Audio, Speech, and Language Processing, 2012, 20(1): 30-42. doi: 10.1109/TASL.2011.2134090
|
[11] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Conference on Neural Information Processing Systems. 2012: 1097-1105.
|
[12] |
Sun Yi, Wang Xiaogang, Tang Xiaoou. Deep learning face representation by joint identification-verification[J]. International Conference on Neural Information Processing Systems, 2014, 27: 1988-1996.
|
[13] |
刘明, 李国军, 郝华青, 等. 基于卷积神经网络的T波形态分类[J]. 自动化学报, 2016, 42(9): 1339-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609005.htm
Liu Ming, Li Guojun, Hao Huaqing, et al. T wave shape classification based on convolutional neural network. Acta Automatica Sinica, 2016, 42(9): 1339-1346 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609005.htm
|