Volume 30 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
Shi Yanchao, Teng Yan, Chen Changhua, et al. A high efficiency X-band over-mode relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 073002. doi: 10.11884/HPLPB201830.170491
Citation: Shi Yanchao, Teng Yan, Chen Changhua, et al. A high efficiency X-band over-mode relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 073002. doi: 10.11884/HPLPB201830.170491

A high efficiency X-band over-mode relativistic backward wave oscillator

doi: 10.11884/HPLPB201830.170491
  • Received Date: 2017-12-01
  • Rev Recd Date: 2018-01-29
  • Publish Date: 2018-07-15
  • This paper studies a high efficiency X-band over-mode relativistic backward wave oscillator (RBWO), which is composed of a dual-cavity reflector, a 7-periods trapezoid SWS and extraction cavity. The ratio of D to λ of the generator is 2.6, and the electron beam interacts with the TM01 near π mode of the structure wave. In the SWS region the TM01 mode surface wave mainly transfers to the TM02 mode body wave, the primary mode of the output microwave is TM02 mode with the proportion 81%, and the remainder is TM01 mode. A method to design the resonant reflector under over-mode condition is proposed, a dual-cylindrical cavity reflector is optimized by using the mode-matching method, and the reflection coefficients for the TM01 and TM02 modes are larger than 0.99, hence good insulation between the SWS and the diode is achieved. Simultaneously, the longitudinal electric field of the resonant reflector could pre-modulate the electron beam sufficiently, which would promote the beam-wave interaction in the SWS. Furthermore, the transfer coefficient is increased by loading the extraction cavity after the SWS. Simulation results indicate that microwave output power of 6.6 GW is achieved, the diode voltage is 900 kV and beam current is 14.3 kA, and the transfer efficiency is 51%.
  • loading
  • [1]
    Carmel Y, Ivers J, Kribe R E, et al. Intense coherent Cherenkov radiation due to the interaction of a relativistic electron beam with a slow-wave structure[J]. Phys Rev Lett, 1974, 33: 1278-1282. doi: 10.1103/PhysRevLett.33.1278
    [2]
    Swegle J A, Poukey J W, Leifeste G T. Backward wave oscillators with rippled wall resonators: Analytic theory and numerical simulation[J]. Phys Fluids, 1985, 28: 2882-2894. doi: 10.1063/1.865209
    [3]
    Gunin A V, Klimov A I, Korovin S D, et al. Relativistic X-band BWO with 3-GW output power[J]. IEEE Trans Plasma Science, 1998, 26(3): 326-331. doi: 10.1109/27.700761
    [4]
    Chen Changhua, Liu Guozhi, Huang Wenhua, et al. A repetitive X-band relativistic backward-wave oscillator[J]. IEEE Trans Plasma Science, 2002, 30(3): 1108-1111. doi: 10.1109/TPS.2002.801656
    [5]
    Korovin S D, Kurkan I K, Rostov V V, et al. Relativistic backward wave oscillator with a discrete resonance reflector[J]. Radiophysics and Quantum Electronics, 1999, 42(12): 1047-1054. doi: 10.1007/BF02677128
    [6]
    Klimov A I, Kurkan I K, Polevin S D, et al. A multigigawatt X-band relativistic backward wave oscillator with a modulating resonant reflector[J]. Pis'ma V Zh Tekh Fiz, 2008, 34(3): 235-237.
    [7]
    宋玮, 陈昌华, 孙钧, 等. X波段相对论返波管谐振反射器[J]. 强激光与粒子束, 2010, 22(4): 853-856. http://www.hplpb.com.cn/article/id/4722

    Song Wei, Chen Changhua, Sun Jun, et al. Resonant reflector of an X-band relativistic backward oscillator. High Power Laser and Particle Beams, 2010, 22(4): 853-856 http://www.hplpb.com.cn/article/id/4722
    [8]
    Xiao Renzhen, Li Jiawei, Bai Xianchen, et al. An overmoded relativistic backward wave oscillator with efficient dual-mode operation[J]. Appl Phys Lett, 2014, 104: 093505. doi: 10.1063/1.4867531
    [9]
    马乔生, 张运俭, 李正红, 等. X波段永磁包装相对论返波管研制[J]. 强激光与粒子束, 2017, 29: 023002. doi: 10.11884/HPLPB201729.160456

    Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, et al. Development of X-band relativistic backward-wave oscillator with permanent magnet. High Power Laser and Particle Beams, 2017, 29: 023002 doi: 10.11884/HPLPB201729.160456
    [10]
    Gesell G A, Ciric I R. Recurrence modal analysis for multiple waveguide discontinuities and its application to circular structures[J]. IEEE Trans Microwave Theory Tech, 1993, 41(3): 484-490. doi: 10.1109/22.223749
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (1308) PDF downloads(338) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return