Shi Yanchao, Teng Yan, Chen Changhua, et al. A high efficiency X-band over-mode relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 073002. doi: 10.11884/HPLPB201830.170491
Citation: Shi Yanchao, Teng Yan, Chen Changhua, et al. A high efficiency X-band over-mode relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 073002. doi: 10.11884/HPLPB201830.170491

A high efficiency X-band over-mode relativistic backward wave oscillator

doi: 10.11884/HPLPB201830.170491
  • Received Date: 2017-12-01
  • Rev Recd Date: 2018-01-29
  • Publish Date: 2018-07-15
  • This paper studies a high efficiency X-band over-mode relativistic backward wave oscillator (RBWO), which is composed of a dual-cavity reflector, a 7-periods trapezoid SWS and extraction cavity. The ratio of D to λ of the generator is 2.6, and the electron beam interacts with the TM01 near π mode of the structure wave. In the SWS region the TM01 mode surface wave mainly transfers to the TM02 mode body wave, the primary mode of the output microwave is TM02 mode with the proportion 81%, and the remainder is TM01 mode. A method to design the resonant reflector under over-mode condition is proposed, a dual-cylindrical cavity reflector is optimized by using the mode-matching method, and the reflection coefficients for the TM01 and TM02 modes are larger than 0.99, hence good insulation between the SWS and the diode is achieved. Simultaneously, the longitudinal electric field of the resonant reflector could pre-modulate the electron beam sufficiently, which would promote the beam-wave interaction in the SWS. Furthermore, the transfer coefficient is increased by loading the extraction cavity after the SWS. Simulation results indicate that microwave output power of 6.6 GW is achieved, the diode voltage is 900 kV and beam current is 14.3 kA, and the transfer efficiency is 51%.
  • [1]
    Carmel Y, Ivers J, Kribe R E, et al. Intense coherent Cherenkov radiation due to the interaction of a relativistic electron beam with a slow-wave structure[J]. Phys Rev Lett, 1974, 33: 1278-1282. doi: 10.1103/PhysRevLett.33.1278
    [2]
    Swegle J A, Poukey J W, Leifeste G T. Backward wave oscillators with rippled wall resonators: Analytic theory and numerical simulation[J]. Phys Fluids, 1985, 28: 2882-2894. doi: 10.1063/1.865209
    [3]
    Gunin A V, Klimov A I, Korovin S D, et al. Relativistic X-band BWO with 3-GW output power[J]. IEEE Trans Plasma Science, 1998, 26(3): 326-331. doi: 10.1109/27.700761
    [4]
    Chen Changhua, Liu Guozhi, Huang Wenhua, et al. A repetitive X-band relativistic backward-wave oscillator[J]. IEEE Trans Plasma Science, 2002, 30(3): 1108-1111. doi: 10.1109/TPS.2002.801656
    [5]
    Korovin S D, Kurkan I K, Rostov V V, et al. Relativistic backward wave oscillator with a discrete resonance reflector[J]. Radiophysics and Quantum Electronics, 1999, 42(12): 1047-1054. doi: 10.1007/BF02677128
    [6]
    Klimov A I, Kurkan I K, Polevin S D, et al. A multigigawatt X-band relativistic backward wave oscillator with a modulating resonant reflector[J]. Pis'ma V Zh Tekh Fiz, 2008, 34(3): 235-237.
    [7]
    宋玮, 陈昌华, 孙钧, 等. X波段相对论返波管谐振反射器[J]. 强激光与粒子束, 2010, 22(4): 853-856. http://www.hplpb.com.cn/article/id/4722

    Song Wei, Chen Changhua, Sun Jun, et al. Resonant reflector of an X-band relativistic backward oscillator. High Power Laser and Particle Beams, 2010, 22(4): 853-856 http://www.hplpb.com.cn/article/id/4722
    [8]
    Xiao Renzhen, Li Jiawei, Bai Xianchen, et al. An overmoded relativistic backward wave oscillator with efficient dual-mode operation[J]. Appl Phys Lett, 2014, 104: 093505. doi: 10.1063/1.4867531
    [9]
    马乔生, 张运俭, 李正红, 等. X波段永磁包装相对论返波管研制[J]. 强激光与粒子束, 2017, 29: 023002. doi: 10.11884/HPLPB201729.160456

    Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, et al. Development of X-band relativistic backward-wave oscillator with permanent magnet. High Power Laser and Particle Beams, 2017, 29: 023002 doi: 10.11884/HPLPB201729.160456
    [10]
    Gesell G A, Ciric I R. Recurrence modal analysis for multiple waveguide discontinuities and its application to circular structures[J]. IEEE Trans Microwave Theory Tech, 1993, 41(3): 484-490. doi: 10.1109/22.223749
  • Relative Articles

    [1]Zuo Jingfan, Li Shifeng, Wu Yang, Huang Hua, Sun Limin, Song Falun. Low magnetic field X-band over-mode relativistic backward wave oscillator with dual-cavity reflector[J]. High Power Laser and Particle Beams, 2024, 36(3): 033010. doi: 10.11884/HPLPB202436.230319
    [2]Cao Yibing, Sun Jun, Song Zhimin, Fan Zhiqiang, Wu Ping, Zhang Yuchuan, Teng Yan. Design and experiment of long-pulse C-band relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30(5): 053004. doi: 10.11884/HPLPB201830.170470
    [3]Ye Hu, Cui Xinhong, Xiong Zhengfeng. Compact V-band overmoded mode-selective coupler with diamond apertures[J]. High Power Laser and Particle Beams, 2016, 28(09): 093006. doi: 10.11884/HPLPB201628.150842
    [4]Ye Hu, Chen Changhua, Ning Hui, Song Zhimin, Li Xiaoze. Overmoded high power millimeter generator with resonant cavity reflector under high order mode[J]. High Power Laser and Particle Beams, 2014, 26(06): 063028.
    [5]Zhang Jianqiong, Liu Qingxiang, Li Xiangqiang, Wang Bangji. High power over-moded circular waveguide to two-way rectangular waveguide power divider[J]. High Power Laser and Particle Beams, 2014, 26(09): 093001. doi: 10.11884/HPLPB201426.093001
    [6]Wang Guangqiang, Wang Jianguo, Tong Changjiang, Wang Xuefeng, Li Shuang, Lu Xicheng, . Development of 0.14 THz high-power pulse detector with overmoded structure[J]. High Power Laser and Particle Beams, 2013, 25(11): 2959-2964. doi: 10.3788/HPLPB20132511.2959
    [7]Xiao Renzhen, Teng Yan, Song Zhimin, Chen Changhua, Sun Jun. Theoretical study of klystron-like relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(03): 747-751. doi: 10.3788/HPLPB20122403.0747
    [8]liu feng, meng lin, zhang jianguo, li hailong, song gangyong. Particle simulation of coaxial multi-frequency relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [9]wang huihui, li hailong, meng lin, liu feng. Particle simulation of dual-frequency relativistic backward wave oscillator with resonant reflector[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [10]zhang xiaowei, xiao renzhen, chen changhua, zhang lijun, zhang ligang. A method for improving power capability of relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [11]li guolin, shu ting, yuan chengwei, wang ting, zhang jun. X-band quasi-coherent power combiner based on overmoded waveguides for high power microwave[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [12]cao shengguang, qian baoliang, he juntao, wang honggang, li da. Ka-band relative backward wave oscillator driven by all-solid-state pulsed power generator[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [13]song wei, chen changhua, sun jun, zhang ligang, yang meng, chen peng, zhang xiaowei, hu yongmei. Resonant reflector of an X-band relativistic backward oscillator[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [14]dong ye, dong zhi-wei, yang wen-yuan, zhou hai-jing, jiang you-ming. Feasible ways of inceasing peak superradiant-power of relativistic-backward-wave-oscillator[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [15]hu lin-lin, chen hong-bin, ma guo-wu, meng fan-bao, zhou chuan-ming. Design and preliminary experimental study of X-band short pulse relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [16]song zhi-min, liu guo-zhi, chen chang-hua, fan ju-ping. Experimental study of backward wave oscillator with resonant reflector operating at low magnetic field[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [17]fan ju-ping, liu guo-zhi, chen chang-hua, song zhi-min. Numeric Study of Relativistic Backward wave oscillator with Resonant reflector[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [18]liu guo-zhi, chen chang-hua, zhang yu-long. Relativistic backward-wave oscillator with coaxial extractor[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
    [19]fan ju-ping, liu guo-zhi, chen chang-hua, hu yong-mei, wang hong-jun. Experimental Studies of Relativistic Backward Wave Oscillator with Resonant reflector[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Cited by

    Periodical cited type(2)

    1. 李家文,葛行军,党方超,张鹏,邓如金,胡晓冬,李志敏. 一种基于嵌套结构的锁频锁相高功率微波振荡器仿真研究. 强激光与粒子束. 2024(03): 28-34 . 本站查看
    2. 左靖凡,李士锋,吴洋,黄华,孙利民,宋法伦. 带双腔反射器的X波段低磁场过模相对论返波管振荡器. 强激光与粒子束. 2024(03): 63-68 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.8 %FULLTEXT: 24.8 %META: 69.6 %META: 69.6 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.0 %其他: 9.0 %其他: 1.2 %其他: 1.2 %China: 0.3 %China: 0.3 %India: 0.1 %India: 0.1 %Kao-sung: 0.2 %Kao-sung: 0.2 %Rajahmundry: 0.3 %Rajahmundry: 0.3 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 1.3 %[]: 1.3 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊斯兰堡: 0.1 %伊斯兰堡: 0.1 %内江: 0.1 %内江: 0.1 %北京: 20.5 %北京: 20.5 %十堰: 0.2 %十堰: 0.2 %南京: 0.6 %南京: 0.6 %南通: 0.1 %南通: 0.1 %台州: 0.2 %台州: 0.2 %哈尔科夫: 0.2 %哈尔科夫: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %埼玉县: 0.1 %埼玉县: 0.1 %天津: 0.3 %天津: 0.3 %宣城: 0.3 %宣城: 0.3 %巴中: 0.1 %巴中: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.4 %常德: 0.4 %广州: 0.1 %广州: 0.1 %张家口: 0.9 %张家口: 0.9 %德黑兰: 0.7 %德黑兰: 0.7 %成都: 1.2 %成都: 1.2 %扬州: 0.2 %扬州: 0.2 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %格拉斯哥: 0.2 %格拉斯哥: 0.2 %榆林: 0.1 %榆林: 0.1 %武汉: 0.1 %武汉: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 1.1 %漯河: 1.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.6 %绵阳: 0.6 %美国密歇根兰辛: 0.1 %美国密歇根兰辛: 0.1 %芒廷维尤: 19.6 %芒廷维尤: 19.6 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %英格兰: 0.1 %英格兰: 0.1 %衡水: 0.3 %衡水: 0.3 %西宁: 31.8 %西宁: 31.8 %西安: 1.3 %西安: 1.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %长沙: 1.8 %长沙: 1.8 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %首尔: 0.3 %首尔: 0.3 %其他其他ChinaIndiaKao-sungRajahmundryTaiwan, ChinaUnited States[]上海中山临汾丹东伊斯兰堡内江北京十堰南京南通台州哈尔科夫哥伦布嘉兴埼玉县天津宣城巴中常州常德广州张家口德黑兰成都扬州昆明晋城普洱杭州格拉斯哥榆林武汉洛杉矶济南深圳温州湖州湛江漯河福州秦皇岛纽约绵阳美国密歇根兰辛芒廷维尤芝加哥苏州英格兰衡水西宁西安贵阳运城邯郸郑州重庆长沙长治阳泉首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (1469) PDF downloads(349) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return