Zheng Jianhua, Yan Ji, Wei Minxi, et al. Design and application of Ross filter spectrometer covering 18-88 keV[J]. High Power Laser and Particle Beams, 2015, 27: 122001. doi: 10.11884/HPLPB201527.122001
Citation: Jiang Hui, Yu Deping, Lü Cheng, et al. Experimental study on preparation of spherical alumina powder by laminar plasma jet[J]. High Power Laser and Particle Beams, 2018, 30: 079002. doi: 10.11884/HPLPB201830.170500

Experimental study on preparation of spherical alumina powder by laminar plasma jet

doi: 10.11884/HPLPB201830.170500
  • Received Date: 2017-12-12
  • Rev Recd Date: 2018-03-15
  • Publish Date: 2018-07-15
  • For preparing micro-sized spherical alumina powder, the micro-sized η phase irregular alumina powders with large pore volume were spheroidized in laminar plasma jet generated by a segmented anode non-transferred arc laminar plasma torch using nitrogen as plasma gas. The effect of different working parameters of the plasma torch and a powder feeder on the spheroidization rate of the treated powders was investigated. The spheroidization rate was obtained by counting the number of the spherical particles over the total particles shown in images taken by an optical microscope, using reflection method. The spheroidization rate of the treated powders was close to 100%, showing a good performance of the laminar plasma torch. The alumina powders with high spheroidization rate, high dispersion and uniform particle size can be obtained using different combinations of the working parameters of the plasma torch and the powder feeder. In addition, it was shown that high spheroidization rate of the alumina powders can be achieved with the laminar plasma torch working at low power. The main phases of the raw and treated alumina are η and α, respectively, characterized by the XRD based on PDF card matching method.
  • [1]
    李建忠. 导热绝缘硅胶材料用氧化铝性能研究[J]. 轻金属, 2012(3): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201203004.htm

    Li Jianzhong. Study on alumina properties for heat conductive insulating silicone rubber. Light Metals, 2012(3): 11-13 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201203004.htm
    [2]
    Cao Y, Ma C, Fei T, et al. Effect of main operating parameters on Al2O3, spheroidization by radio frequency plasma system[J]. Rare Metal Materials and Engineering, 2017, 46(2): 333-338. doi: 10.1016/S1875-5372(17)30090-5
    [3]
    Hu Peng, Yan Shikai, Yuan Fangli, et al. Effect of plasma spheroidization process on the microstructure and crystallographic phases of silica, alumina and nickel particles[J]. Plasma Science and Technology, 2007, 9(5): 611. doi: 10.1088/1009-0630/9/5/20
    [4]
    Ye R, Ishigaki T, Jurewicz J, et al. In-flight spheroidization of alumina powders in Ar-H2, and Ar-N2, induction plasmas[J]. Plasma Chemistry and Plasma Processing, 2004, 24(4): 555-571. doi: 10.1007/s11090-004-7932-8
    [5]
    Károly Z, Szépvölgyi J. Plasma spheroidization of ceramic particles[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(2): 221-224. doi: 10.1016/j.cep.2004.02.015
    [6]
    闫世凯, 袁方利, 胡鹏, 等. RF等离子体球化制备球形氧化铝和氧化硅[C]//第十四届全国复合材料学术会议, 2006.

    Yan Shikai, Yuan Fangli, Hu Peng, et al. Preparation of spherical SiO2 and Al2O3 powders in rf thermal plasma. Proc of 14th National Conference on Composite Material. 2006
    [7]
    Chaturvedi V, Ananthapadmanabhan P V, Chakravarthy Y, et al. Thermal plasma spheroidization of aluminum oxide and characterization of the spheroidized alumina powder[J]. Ceramics International, 2014, 40(6): 8273-8279. doi: 10.1016/j.ceramint.2014.01.026
    [8]
    钟良, 侯力, 古忠涛. 射频感应等离子体制备球形氧化铝的工艺研究[J]. 强激光与粒子束, 2014, 26: 089003. doi: 10.11884/HPLPB201426.089003

    Zhong Liang, Hou Li, Gu Zhongtao. Preparation procedure for spherical alumina by RF induction plasma. High Power laser and Particle Beams, 2014, 26: 089003 doi: 10.11884/HPLPB201426.089003
    [9]
    朱海龙, 叶高英, 程昌明, 等. 射频耦合Ar-O2热等离子体制备微米级球形氧化铝粉末[C]//全国等离子体医学研讨会会议. 2013.

    Zhu Hailong, Ye Gaoying, Cheng Changming, et al. Preparation of micron spherical alumina powder by RF coupled Ar-O2 thermal plasma//National Symposium on Plasma Medicine. 2013
    [10]
    Lee W, Choi S, Oh S M, et al. Preparation of spherical hollow alumina particles by thermal plasma[J]. Thin Solid Films, 2013, 529: 394-397. doi: 10.1016/j.tsf.2012.05.048
    [11]
    Suresh K, Selvarajan V, Vijay M. Synthesis of nanophase alumina, and spheroidization of alumina particles, and phase transition studies through DC thermal plasma processing[J]. Vacuum, 2008, 82(8): 814-820. doi: 10.1016/j.vacuum.2007.11.008
    [12]
    Cao Xiuquan, Yu Deping, Xiao Meng, et al. Design and characteristics of a laminar plasma torch for materials processing[J]. Plasma Chemistry and Plasma Processing, 2016, 36(2): 693-710. doi: 10.1007/s11090-015-9661-6
    [13]
    Cao Xiuquan, Yu Deping, Xiang Yong, et al. Influence of the laminar plasma torch construction on the jet characteristics[J]. Plasma Science and Technology, 2016, 18(7): 740-743. doi: 10.1088/1009-0630/18/7/07
    [14]
    Gavrilova R, Hadzhiyski V. Synthesis and spheroidization of disperse high-melting (refractory) powders in plasma discharge[J]. Annals of the University Dunarea De Jos of Galati Fascicle IX, 2011, 29(3): 66-70.
  • Relative Articles

    [1]Jia Qinggang, Mao Pengcheng, Wang Wenyuan, Kong Linghai, Yang Bo, Xu Haibo. Preliminary study on scatter quantification method for flash Multi-MeV radiography[J]. High Power Laser and Particle Beams, 2022, 34(11): 116001. doi: 10.11884/HPLPB202234.210488
    [2]Wang Feng, Li Yulong, Guan Zanyang, Zhang Xing, Li Jin, Huang Yunbao, Gan Huaquan, Che Xingsen. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34(3): 031021. doi: 10.11884/HPLPB202234.210250
    [3]Zhang Tiankui, Shan Lianqiang, Yu Minghai, Lu Feng, Zhou Weimin, Tian Chao, Tan Fang, Yan Yonghong, Zhang Feng, Yuan Zongqiang, Xu Qiuyue, Wang Weiwu, Deng Zhigang, Teng Jian, Liu Dongxiao, Yang Lei, Fan Wei, Yang Yue, Zhou Kainan, Su Jingqin, Wu Yuchi, Ding Yongkun, Gu Yuqiu. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34(12): 122001. doi: 10.11884/HPLPB202234.220186
    [4]Cao Zhurong, Wang Qiangqiang, Deng Bo, Chen Tao, Deng Keli, Wang Weirong, Peng Xingyu, Chen Zhongjing, Yuan Zheng, Li Yukun, Wang Peng, Chen Bolun, Wang Feng, He Haien, Li Xingzhu, Xu Zeping, Yang Dong, Yang Jiamin, Jiang Shaoen, Ding Yongkun, Zhang Weiyan. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112004. doi: 10.11884/HPLPB202032.200099
    [5]Wang Feng, Zhang Xing, Li Yulong, Chen Bolun, Chen Zhongjing, Xu Tao, Liu Xincheng, Zhao Hang, Ren Kuan, Yang Jiamin, Jiang Shaoen, Zhang Baohan. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112002. doi: 10.11884/HPLPB202032.200136
    [6]Gao Shasha, Wu Xiaojun, He Zhibing, He Xiaoshan, Wang Tao, Zhu Fanghua, Zhang Zhanwen. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001. doi: 10.11884/HPLPB202032.200039
    [7]Cao Leifeng, Yang Zuhua, Chen Jihui, Wei Lai, Fan Quanping, Chen Yong, Zhang Qiangqiang, Zhou Weimin. Conceptual design of soft X-ray online calibration system for ICF[J]. High Power Laser and Particle Beams, 2020, 32(11): 112007. doi: 10.11884/HPLPB202032.200141
    [8]Sun Ao, Shang Wanli, Yang Guohong, Wei Minxi, Li Miao, Che Xingsen, Hou Lifei, Du Huabing, Yang Yimeng, Zhang Wenhai, Yang Dong, Wang Feng, He Haien, Yang Jiamin, Jiang Shaoen, Zhang Baohan, Ding Yongkun. Study on X-ray line emission diffraction in inertial confinement fusion and its recent progress[J]. High Power Laser and Particle Beams, 2020, 32(11): 112008. doi: 10.11884/HPLPB202032.200129
    [9]Yang Jing, Wu Yuchi, Yu Minghai, Zhang Tiankui, Yan Yonghong, Dong Kegong, Wang Shaoyi, Zhu Bin, Tan Fang, Shan Lianqiang, Zhou Weimin, Cao Leifeng, Gu Yuqiu. Background noise in Compton radiography diagnostic[J]. High Power Laser and Particle Beams, 2017, 29(11): 112001. doi: 10.11884/HPLPB201729.170257
    [10]Yang Yue, Zhao Zongqing, Zheng Jianhua, Zhang Tiankui. Production of bright high-energy X-rays based on interaction of laser and near-critical-density plasma[J]. High Power Laser and Particle Beams, 2017, 29(08): 082003. doi: 10.11884/HPLPB201729.170138
    [11]Yang Qingguo, Huang Xianbin, Liu Dongbing, Mu Jian, Dan Jiakun, Feng Shuping, Xie Xudong, Deng Wu, Ye Yan, Tan Bozhong, Wei Bing, Zhang Siqun, Ren Xiaodong, Ouyang Kai, Li Yong, Ren Ji, Ding Yu, Tian Qing, Wang Liquan, Li Keyu, Jing Yukun, Wang Lingfang, Yu Bing, Wang Meng, Peng Qixian, Li Zeren. The first X-ray backlighting of Z-pinched aluminium liner experiment on PTS facility[J]. High Power Laser and Particle Beams, 2016, 28(04): 040101. doi: 10.11884/HPLPB201628.120101
    [12]Pu Yudong, Chen Bolun, Huang Tianxuan, Miao Wenyong, Chen Jiabin, Zhang Jiyan, Yang Guohong, Yi Rongqing, Wei Minxi, Du Huabing, Peng Xiaoshi, Yu Bo, Jiang Wei, Yan Ji, Jing Longfei, Tang Qi, Song Zifeng, Jiang Shaoen, Yang Jiamin, Liu Shenye, Ding Yongkun. Experimental studies of implosion physics of indirect-drive inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27(03): 032015. doi: 10.11884/HPLPB201527.032015
    [13]Yan Ji, Chen Bolun, Jiang Wei, Yuan Yongteng, Wei Minxi, Yu Bo, Chen Li, Zheng Jianhua, Pu Yudong, Huang Tianxuan. Laser-induced Pd L-band X-ray source based on Shenguang Ⅱ facility[J]. High Power Laser and Particle Beams, 2014, 26(08): 082003. doi: 10.11884/HPLPB201426.082003
    [14]Shan Lianqiang, Zhou Weimin, Zhao Zongqing, Han Dan, Wu Fengjuan, Tan Fang, Liu Hongjie, Liu Dongxiao, Wu Bo, Yu Jinqing, Qian Feng, Cao Leifeng, Gu Yuqiu. Effect of non-ideal backlighter radiography on Abel density inversion of target shell[J]. High Power Laser and Particle Beams, 2013, 25(03): 651-656. doi: 10.3788/HPLPB20132503.0651
    [15]Yan Ji, Zheng Jianhua, Huang Tianxuan, Jiang Shaoen. High-energy X-ray backlight research based on Shenguang Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2013, 25(12): 3127-3130. doi: 3127
    [16]Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097. doi: 3091
    [17]Chen Nan, Jing Xiaobing, Gao Feng, Zhang Linwen, Yin Zejie, Li Shiping. Multi-layer stacking method to measure high-energy X-ray energy spectrum[J]. High Power Laser and Particle Beams, 2012, 24(04): 785-788. doi: 10.3788/HPLPB20122404.0785
    [18]liu shenye, yang guohong, zhang jiyan, li jun, huang yixiang, hu xin, yi rongqing, du huabing, cao zhurong, zhang haiying, ding yongkun. Experimental research of capsule implosion by X-ray backlighting radiography at Shenguang Ⅱ[J]. High Power Laser and Particle Beams, 2011, 23(12): 37-38.
    [19]yang qing-guo, li ze-ren, peng qi-xian, chen guang-hua, ye yan, liu shou-xian. Optimum design of laser-driven-monochromatic X-ray backlighting system[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
  • Cited by

    Periodical cited type(14)

    1. 张伟,郭昆明. 冲击波预裂工艺技术在高地压矿井上覆硬岩层的工程实践. 现代矿业. 2024(01): 91-94 .
    2. 陆金波,贺宗鉴,朱鑫磊,黄昆. 基于晶闸管的放电冲击波油气增产装置研制. 科学技术与工程. 2024(05): 1885-1892 .
    3. 闫小兵,王秀龙,贺能,马正腾,张凤鹏. 金属丝电爆炸的电流波形特征及其破岩效果研究. 中国矿业. 2024(06): 210-217 .
    4. 冯国瑞,朱林俊,郭军,王朋飞,高瑞,文晓泽,樊一江,钱瑞鹏,米鑫程. 电脉冲循环冲击作用对花岗岩抗剪性能弱化研究. 中南大学学报(自然科学版). 2023(03): 785-796 .
    5. 王兆寒,张晨晖,于航,匡春霖,张凤鹏,彭建宇. 铜丝电爆炸载荷下红砂岩破裂行为实验. 有色金属(矿山部分). 2022(03): 36-41 .
    6. 秦勇,李恒乐,张永民,赵有志,赵锦程,邱爱慈. 基于地质–工程条件约束的可控冲击波煤层致裂行为数值分析. 煤田地质与勘探. 2021(01): 108-118+129 .
    7. 王巧智,苏延辉,江安,郑春峰,高波,张云飞. 可控冲击波增渗解堵技术实验研究. 天然气与石油. 2021(02): 68-74 .
    8. 闫广亮,张凤鹏,郝红泽,高继开. 电爆炸破碎岩石类脆性材料实验方法与应用. 煤炭学报. 2021(10): 3203-3211 .
    9. 冉慧娟,耿召阳,赵伟康,张金梁,王珏,严萍. 脉冲大电流应用电缆的设计. 科学技术与工程. 2020(03): 1064-1070 .
    10. 杨万有,郑春峰,李昂,尹莎莎,郭晓飞,赵展,卢勇. 可控冲击波致裂海上油层可行性分析. 钻采工艺. 2020(01): 38-41+9 .
    11. 薛乐星,潘文,冯博,封雪松,赵娟,冯晓军. 等离子体起爆条件对不敏感含能材料响应强度的影响. 火炸药学报. 2020(03): 320-324 .
    12. 汪倩,李晓蔚,阴国锋,范云飞,石桓通,李兴文. 水中铜丝电爆炸激光阴影及流体模拟研究. 高电压技术. 2020(07): 2586-2592 .
    13. 鄢宇杰,付荣耀,李楠,孙鹞鸿,严萍. 电弧压裂技术研究现状与发展. 高压电器. 2019(09): 71-77 .
    14. 张永民,安世岗,陈殿赋,师庆民,张增辉,赵有志,罗伙根,邱爱慈,秦勇. 可控冲击波增透保德煤矿8~#煤层的先导性试验. 煤矿安全. 2019(10): 14-17+21 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.4 %FULLTEXT: 18.4 %META: 79.2 %META: 79.2 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 1.1 %其他: 1.1 %Austin: 0.1 %Austin: 0.1 %Canada: 0.4 %Canada: 0.4 %China: 0.1 %China: 0.1 %Egypt: 0.4 %Egypt: 0.4 %France: 0.1 %France: 0.1 %Germany: 0.1 %Germany: 0.1 %Grove City: 0.1 %Grove City: 0.1 %Hamilton: 0.1 %Hamilton: 0.1 %India: 0.1 %India: 0.1 %Lewisburg: 0.3 %Lewisburg: 0.3 %Neptune City: 0.1 %Neptune City: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Storrs: 0.3 %Storrs: 0.3 %United States: 0.9 %United States: 0.9 %Wixom: 0.3 %Wixom: 0.3 %[]: 0.8 %[]: 0.8 %上海: 1.5 %上海: 1.5 %中山: 0.1 %中山: 0.1 %休斯敦: 0.1 %休斯敦: 0.1 %佛罗里达州: 0.4 %佛罗里达州: 0.4 %兰开斯特: 0.1 %兰开斯特: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 10.9 %北京: 10.9 %台州: 0.4 %台州: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %坦佩: 0.1 %坦佩: 0.1 %埃文斯维尔: 0.3 %埃文斯维尔: 0.3 %大连: 0.4 %大连: 0.4 %天津: 0.4 %天津: 0.4 %安條克: 0.1 %安條克: 0.1 %密蘇里城: 0.1 %密蘇里城: 0.1 %布劳利: 0.1 %布劳利: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 0.1 %张家口: 0.1 %德克萨斯: 0.1 %德克萨斯: 0.1 %成都: 0.5 %成都: 0.5 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.5 %杭州: 1.5 %武汉: 0.1 %武汉: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %深圳: 0.3 %深圳: 0.3 %湖州: 0.1 %湖州: 0.1 %漯河: 0.1 %漯河: 0.1 %福州: 0.1 %福州: 0.1 %科隆: 0.4 %科隆: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %纳什维尔: 0.3 %纳什维尔: 0.3 %纽瓦克: 0.4 %纽瓦克: 0.4 %纽约: 0.4 %纽约: 0.4 %绵阳: 0.4 %绵阳: 0.4 %罗利: 0.3 %罗利: 0.3 %芒廷维尤: 20.4 %芒廷维尤: 20.4 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.6 %衢州: 0.6 %西宁: 46.2 %西宁: 46.2 %西安: 0.1 %西安: 0.1 %迈阿密: 0.1 %迈阿密: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.1 %重庆: 0.1 %长治: 0.3 %长治: 0.3 %其他其他AustinCanadaChinaEgyptFranceGermanyGrove CityHamiltonIndiaLewisburgNeptune CitySeattleStorrsUnited StatesWixom[]上海中山休斯敦佛罗里达州兰开斯特加利福尼亚州北京台州哥伦布坦佩埃文斯维尔大连天津安條克密蘇里城布劳利广州张家口德克萨斯成都昆明晋城普洱杭州武汉洛杉矶深圳湖州漯河福州科隆秦皇岛纳什维尔纽瓦克纽约绵阳罗利芒廷维尤衡阳衢州西宁西安迈阿密运城郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1599) PDF downloads(220) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return