Jiang Hui, Yu Deping, Lü Cheng, et al. Experimental study on preparation of spherical alumina powder by laminar plasma jet[J]. High Power Laser and Particle Beams, 2018, 30: 079002. doi: 10.11884/HPLPB201830.170500
Citation: Jiang Hui, Yu Deping, Lü Cheng, et al. Experimental study on preparation of spherical alumina powder by laminar plasma jet[J]. High Power Laser and Particle Beams, 2018, 30: 079002. doi: 10.11884/HPLPB201830.170500

Experimental study on preparation of spherical alumina powder by laminar plasma jet

doi: 10.11884/HPLPB201830.170500
  • Received Date: 2017-12-12
  • Rev Recd Date: 2018-03-15
  • Publish Date: 2018-07-15
  • For preparing micro-sized spherical alumina powder, the micro-sized η phase irregular alumina powders with large pore volume were spheroidized in laminar plasma jet generated by a segmented anode non-transferred arc laminar plasma torch using nitrogen as plasma gas. The effect of different working parameters of the plasma torch and a powder feeder on the spheroidization rate of the treated powders was investigated. The spheroidization rate was obtained by counting the number of the spherical particles over the total particles shown in images taken by an optical microscope, using reflection method. The spheroidization rate of the treated powders was close to 100%, showing a good performance of the laminar plasma torch. The alumina powders with high spheroidization rate, high dispersion and uniform particle size can be obtained using different combinations of the working parameters of the plasma torch and the powder feeder. In addition, it was shown that high spheroidization rate of the alumina powders can be achieved with the laminar plasma torch working at low power. The main phases of the raw and treated alumina are η and α, respectively, characterized by the XRD based on PDF card matching method.
  • [1]
    李建忠. 导热绝缘硅胶材料用氧化铝性能研究[J]. 轻金属, 2012(3): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201203004.htm

    Li Jianzhong. Study on alumina properties for heat conductive insulating silicone rubber. Light Metals, 2012(3): 11-13 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201203004.htm
    [2]
    Cao Y, Ma C, Fei T, et al. Effect of main operating parameters on Al2O3, spheroidization by radio frequency plasma system[J]. Rare Metal Materials and Engineering, 2017, 46(2): 333-338. doi: 10.1016/S1875-5372(17)30090-5
    [3]
    Hu Peng, Yan Shikai, Yuan Fangli, et al. Effect of plasma spheroidization process on the microstructure and crystallographic phases of silica, alumina and nickel particles[J]. Plasma Science and Technology, 2007, 9(5): 611. doi: 10.1088/1009-0630/9/5/20
    [4]
    Ye R, Ishigaki T, Jurewicz J, et al. In-flight spheroidization of alumina powders in Ar-H2, and Ar-N2, induction plasmas[J]. Plasma Chemistry and Plasma Processing, 2004, 24(4): 555-571. doi: 10.1007/s11090-004-7932-8
    [5]
    Károly Z, Szépvölgyi J. Plasma spheroidization of ceramic particles[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(2): 221-224. doi: 10.1016/j.cep.2004.02.015
    [6]
    闫世凯, 袁方利, 胡鹏, 等. RF等离子体球化制备球形氧化铝和氧化硅[C]//第十四届全国复合材料学术会议, 2006.

    Yan Shikai, Yuan Fangli, Hu Peng, et al. Preparation of spherical SiO2 and Al2O3 powders in rf thermal plasma. Proc of 14th National Conference on Composite Material. 2006
    [7]
    Chaturvedi V, Ananthapadmanabhan P V, Chakravarthy Y, et al. Thermal plasma spheroidization of aluminum oxide and characterization of the spheroidized alumina powder[J]. Ceramics International, 2014, 40(6): 8273-8279. doi: 10.1016/j.ceramint.2014.01.026
    [8]
    钟良, 侯力, 古忠涛. 射频感应等离子体制备球形氧化铝的工艺研究[J]. 强激光与粒子束, 2014, 26: 089003. doi: 10.11884/HPLPB201426.089003

    Zhong Liang, Hou Li, Gu Zhongtao. Preparation procedure for spherical alumina by RF induction plasma. High Power laser and Particle Beams, 2014, 26: 089003 doi: 10.11884/HPLPB201426.089003
    [9]
    朱海龙, 叶高英, 程昌明, 等. 射频耦合Ar-O2热等离子体制备微米级球形氧化铝粉末[C]//全国等离子体医学研讨会会议. 2013.

    Zhu Hailong, Ye Gaoying, Cheng Changming, et al. Preparation of micron spherical alumina powder by RF coupled Ar-O2 thermal plasma//National Symposium on Plasma Medicine. 2013
    [10]
    Lee W, Choi S, Oh S M, et al. Preparation of spherical hollow alumina particles by thermal plasma[J]. Thin Solid Films, 2013, 529: 394-397. doi: 10.1016/j.tsf.2012.05.048
    [11]
    Suresh K, Selvarajan V, Vijay M. Synthesis of nanophase alumina, and spheroidization of alumina particles, and phase transition studies through DC thermal plasma processing[J]. Vacuum, 2008, 82(8): 814-820. doi: 10.1016/j.vacuum.2007.11.008
    [12]
    Cao Xiuquan, Yu Deping, Xiao Meng, et al. Design and characteristics of a laminar plasma torch for materials processing[J]. Plasma Chemistry and Plasma Processing, 2016, 36(2): 693-710. doi: 10.1007/s11090-015-9661-6
    [13]
    Cao Xiuquan, Yu Deping, Xiang Yong, et al. Influence of the laminar plasma torch construction on the jet characteristics[J]. Plasma Science and Technology, 2016, 18(7): 740-743. doi: 10.1088/1009-0630/18/7/07
    [14]
    Gavrilova R, Hadzhiyski V. Synthesis and spheroidization of disperse high-melting (refractory) powders in plasma discharge[J]. Annals of the University Dunarea De Jos of Galati Fascicle IX, 2011, 29(3): 66-70.
  • Relative Articles

    [1]Yü Shihan, Li Xiaofeng, Weng Suming, Zhao Yao, Ma Hanghang, Chen Min, Sheng Zhengming. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33(1): 012006. doi: 10.11884/HPLPB202133.200125
    [2]Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33(7): 075001. doi: 10.11884/HPLPB202133.200321
    [3]Long Feifei, Ming Tingfeng, Zhou Fan, Li Kai, Wang Zhijun, Zhuang Qing, Wu Chengrui, Wang Yumin, Huang Juan, Zang Qing, Zhang Tao, Liu Haiqing, Gao Xiang. Correlation of VUV intensity and basic plasma parameters[J]. High Power Laser and Particle Beams, 2018, 30(4): 046001. doi: 10.11884/HPLPB201830.170378
    [4]Zhang Peng, Hong Yanji, Shen Shuangyan, Ding Xiaoyu. Kinetic effects of plasma-assisted ignition and active particles analysis[J]. High Power Laser and Particle Beams, 2015, 27(03): 032037. doi: 10.11884/HPLPB201527.032037
    [5]Tang Jian, Deng Chunfeng, Wu Chunlei, Lu Biao, Hu Yonghong. Spectral property investigation of pulsed metallic hydride vacuum arc discharge plasmas[J]. High Power Laser and Particle Beams, 2015, 27(11): 114004. doi: 10.11884/HPLPB201527.114004
    [6]Xiang Yong, Yu Deping, Cao Xiuquan, Yao Jin. Experimental study on characteristics of direct-current laminar-flow nitrogen plasma-jet[J]. High Power Laser and Particle Beams, 2014, 26(09): 092005. doi: 10.11884/HPLPB201426.092005
    [7]Liu Mingping, Liu Jianpeng, Luo Rongxiang, Tao Xiangyang. Propagation properties of an intense laser pulse in partially stripped plasma[J]. High Power Laser and Particle Beams, 2014, 26(07): 072006. doi: 10.11884/HPLPB201426.072006
    [8]Luo Weixi, Wang Liangping, Wu Gang, Zhang Xinjun, Cong Peitian, Zeng Zhengzhong. Experimental study on performance parameters of plasma source for the plasma opening switch on QiangguangⅠgenerator[J]. High Power Laser and Particle Beams, 2014, 26(08): 085104. doi: 10.11884/HPLPB201426.085104
    [9]Zhao Xiaoming, Sun Qizhi, Jia Yuesong. Energy deposition of alpha particles in cylindrical and spherical magnetized plasma targets[J]. High Power Laser and Particle Beams, 2014, 26(03): 035002. doi: 10.3788/HPLPB201426.035002
    [10]Zhong Liang, Hou Li, Gu Zhongtao. Preparation procedure for spherical alumina by RF induction plasma[J]. High Power Laser and Particle Beams, 2014, 26(08): 089003. doi: 10.11884/HPLPB201426.089003
    [11]Wu Jing, Yao Lieming, Xue Lei. Diagnostics of dust particles in plasma chemical vapor deposition process emission spectroscopy and Langmuir probe[J]. High Power Laser and Particle Beams, 2013, 25(05): 1283-1287. doi: 10.3788/HPLPB20132505.1283
    [12]Zhang Yang, Peng Yang, Hou Jing, Jiang Zongfu. Effects of refractive index of mixed solution on localized surface plasmon resonance[J]. High Power Laser and Particle Beams, 2013, 25(02): 500-504. doi: 10.3788/HPLPB20132502.0500
    [13]Abudurexiti A, TuniyAzi P, WAng QiAn. Weibel instabilities in ultraintense laser-plasma interaction[J]. High Power Laser and Particle Beams, 2012, 24(01): 110-114.
    [14]meng xian, li teng, pan wenxia, chen xi, wu chengkang. Temperature measurements of laminar argon plasma jet[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [15]liu liwei, qu lu, tan yong, zhang xihe. Plasma spectrum analysis of monocrystalline silicon irradiated by pulsed laser[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [16]zhang jun, zhang xiong-jun, wei xiao-feng, wu deng-sheng, tian xiao-lin, cao ding-xiang, dong jun. Depolarization loss analysis of electro-optic crystal KDP heated by repetition frequency laser[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [17]huang shou jiang, li fang. Time domain analysis of electromagnetic pulse propagation in magnetized plasma using Z transforms[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [18]yu dao-jie, niu zhong-xia, yang jian-hong, mo you-quan, zhou dong-fang, hu tao. Characteristics of active lens antenna based on plasma[J]. High Power Laser and Particle Beams, 2004, 16(07): 0- .
    [19]qiu yun-li, guo hong, liu ming-wei, tang hua, deng dong-mei. X-ray beam propagation in an inhomogeneous plasma with a continuously varied refractive index[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [20]hu qiang-lin, liu shi-bing, ma shan-jun. Nonlinear polarization of partially stripped plasmas in intense laser field[J]. High Power Laser and Particle Beams, 2004, 16(07): 0- .
  • Cited by

    Periodical cited type(7)

    1. 赵明波,曹修全,郭文钰,徐浩铭,马耀明,林长海. 氮氩直流电弧等离子体射流特性实验研究. 高电压技术. 2023(05): 2206-2215 .
    2. 宋文杰,余德平,张斌,彭科铭,吴淦炀. 层流等离子体射流冲击基板的流动与传热特性. 工程热物理学报. 2022(09): 2501-2511 .
    3. 贾睿,刘红宇,孙雪苗,姜苏,沈慧玲,谢凯欣. 球形氧化铝粉体制备的研究进展. 硅酸盐通报. 2021(05): 1657-1665+1678 .
    4. 康玉婵,闫纪源,彭程凯,宋岩泽,马国爽,张亚辉,吕天舒,谢庆. 等离子体介质阻挡放电氟化改性环氧树脂的时效性. 强激光与粒子束. 2021(06): 161-171 . 本站查看
    5. 武志富. 纳米氧化铝形貌与性质之间的关系研究. 人工晶体学报. 2020(02): 353-357 .
    6. 赵阳,朱锦鹏,郝振华,舒永春,杨凯军,何季麟. 感应等离子体球化热喷涂粉体材料研究进展. 表面技术. 2020(05): 81-90 .
    7. 武志富,卿培林,徐敬尧. 碳铵尿素双沉淀法合成球形纳米α-Al_2O_3粉体的研究. 人工晶体学报. 2019(02): 303-306 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.8 %FULLTEXT: 24.8 %META: 72.2 %META: 72.2 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.1 %其他: 5.1 %其他: 1.3 %其他: 1.3 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %Koesan: 0.2 %Koesan: 0.2 %Malvern: 0.2 %Malvern: 0.2 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.3 %United States: 0.3 %[]: 1.6 %[]: 1.6 %上海: 1.6 %上海: 1.6 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.1 %佛山: 0.1 %北京: 16.4 %北京: 16.4 %十堰: 0.5 %十堰: 0.5 %南京: 0.6 %南京: 0.6 %南通: 0.1 %南通: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %名古屋: 0.2 %名古屋: 0.2 %咸阳: 0.3 %咸阳: 0.3 %哈尔科夫: 0.1 %哈尔科夫: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.9 %天津: 0.9 %太原: 0.2 %太原: 0.2 %孟买: 0.3 %孟买: 0.3 %宁波: 0.1 %宁波: 0.1 %宜宾: 0.1 %宜宾: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 0.7 %张家口: 0.7 %徐州: 0.1 %徐州: 0.1 %成都: 1.3 %成都: 1.3 %成都市双流区: 0.1 %成都市双流区: 0.1 %成都市武侯区: 0.1 %成都市武侯区: 0.1 %扬州: 0.3 %扬州: 0.3 %新乡: 0.8 %新乡: 0.8 %新加坡: 0.1 %新加坡: 0.1 %无锡: 0.5 %无锡: 0.5 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %栃木: 0.2 %栃木: 0.2 %: 0.1 %: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.3 %济南: 0.3 %淮南: 0.3 %淮南: 0.3 %深圳: 0.2 %深圳: 0.2 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %漯河: 2.4 %漯河: 2.4 %班加罗尔: 0.2 %班加罗尔: 0.2 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 27.6 %芒廷维尤: 27.6 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 26.1 %西宁: 26.1 %西安: 0.3 %西安: 0.3 %运城: 0.2 %运城: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %郴州: 0.1 %郴州: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.1 %金华: 0.1 %长沙: 0.8 %长沙: 0.8 %长治: 0.2 %长治: 0.2 %随州: 0.2 %随州: 0.2 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.1 %驻马店: 0.1 %其他其他ChinaIndiaKoesanMalvernTaiwan, ChinaUnited States[]上海东莞中山临汾丹东佛山北京十堰南京南通台州合肥名古屋咸阳哈尔科夫哥伦布嘉兴天津太原孟买宁波宜宾宣城常州广州张家口徐州成都成都市双流区成都市武侯区扬州新乡新加坡无锡晋城普洱杭州栃木武汉沈阳沧州泰米尔纳德洛阳济南淮南深圳温州湖州漯河班加罗尔石家庄福州秦皇岛纽约芒廷维尤芝加哥苏州蚌埠衡阳衢州西宁西安运城邯郸郑州郴州重庆金华长沙长治随州青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1582) PDF downloads(220) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return