Volume 30 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
Zhao Dong, Zhou Huixin, Yu Junna, et al. Tracking of infrared dim small target in complex sky background[J]. High Power Laser and Particle Beams, 2018, 30: 061002. doi: 10.11884/HPLPB201830.170511
Citation: Zhao Dong, Zhou Huixin, Yu Junna, et al. Tracking of infrared dim small target in complex sky background[J]. High Power Laser and Particle Beams, 2018, 30: 061002. doi: 10.11884/HPLPB201830.170511

Tracking of infrared dim small target in complex sky background

doi: 10.11884/HPLPB201830.170511
  • Received Date: 2017-12-19
  • Rev Recd Date: 2018-02-09
  • Publish Date: 2018-06-15
  • The complex sky cloud background edge and infrared dim small target cannot be distinguished using traditional tracking algorithms, and the "deviation" problem is produced when tracking the target. To solve this problem, this paper proposes a target tracking algorithm based on Gaussian curvature filter (GCF) and spatio-temporal context (STC) after introducing the STC theory and analyzing the reason of "deviation". First of all, the context areas are dealt with GCF which can reserve the image edge and eliminate the noise and the infrared dim small target, so as to obtain the infrared dim small target's accurate confidence map. Then the infrared dim small target's coordinates are confirmed by the confidence map. Four groups of the infrared dim small target sequences in the complex sky background experimental results prove that the proposed algorithm is effective, compared with several classical algorithms, such as TMT, MS-PF and FCT. The proposed algorithm has better performance than the three traditional algorithms on subjective vision and objective evaluating indicator and shows higher tracking accuracy and better real time performance. The infrared dim small target in complex sky cloud background can be effectively tracked with this algorithm.
  • loading
  • [1]
    Liu Ruiming, Liu Yanhong, Gong Chenglong, et al. Infrared point target detection with improved template matching[J]. Infrared Physics and Technology, 2012, 55(4): 380-387.
    [2]
    刘婧, 孙继银, 朱俊林, 等. 基于模板匹配的前视红外目标识别方法[J]. 弹箭与制导学报, 2010, 30(1): 17-19. doi: 10.3969/j.issn.1673-9728.2010.01.006

    Liu Jing, Sun Jiyin, Zhu Junlin, et al. FLIR target recognition algorithm based on template matching. Journal of Projectiles, Rockets Missiles and Guidance, 2010, 30(1): 17-19 doi: 10.3969/j.issn.1673-9728.2010.01.006
    [3]
    王晓卫, 王旭东, 贺明. 基于直方图比的背景加权的Mean Shift目标跟踪算法[J]. 强激光与粒子束, 2016, 28: 051001. doi: 10.11884/HPLPB201628.051001

    Wang Xiaowei, Wang Xudong, He Ming. Target tracking algorithm based on Mean Shift and histogram ratio background weighted. High Power Laser and Particle Beams, 2016, 28: 051001 doi: 10.11884/HPLPB201628.051001
    [4]
    魏坤, 赵永强, 潘泉, 等. 基于均值漂移和粒子滤波的红外目标跟踪[J]. 光电子·激光, 2008, 19(2): 213-217. doi: 10.3321/j.issn:1005-0086.2008.02.021

    Wei Kun, Zhao Yongqiang, Pan Quan, et al. IR target tracking based on mean shift and particle filter. Journal of Optoelectronics Laser, 2008, 19(2): 213-217 doi: 10.3321/j.issn:1005-0086.2008.02.021
    [5]
    张一帆, 田雁, 杨帆, 等. 基于改进Mean-Shift算法的红外小目标跟踪[J]. 红外与激光工程, 2014, 43(7): 2164-2169. doi: 10.3969/j.issn.1007-2276.2014.07.023

    Zhang Yifan, Tian Yan, Yang Fan, et al. Infrared dim target tracking based on improved mean-shift. Infrared and Laser Engineering, 2014, 43(7): 2164-2169 doi: 10.3969/j.issn.1007-2276.2014.07.023
    [6]
    李正周, 付红霞, 李家宁, 等. 粒子区别性稀疏表征的小弱运动目标跟踪算法[J]. 强激光与粒子束, 2016, 28: 021001. doi: 10.11884/HPLPB201628.021001

    Li Zhengzhou, Fu Hongxia, Li Jianing, et al. Dim moving target tracking algorithm based on particle sparse representation. High Power Laser and Particle Beams, 2016, 28: 021001 doi: 10.11884/HPLPB201628.021001
    [7]
    Zhang Kaihua, Zhang Lei, Yang M H. Fast compressive tracking[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
    [8]
    杨德东, 蔡玉柱, 毛宁, 等. 采用核相关滤波器的长期目标跟踪[J]. 光学 精密工程, 2016, 24(8): 2037-2047. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608027.htm

    Yang Dedong, Cai Yuzhu, Mao Ning, et al. Long-term object tracking based on kernelized correlation filters. Optics and Precision Engineering, 2016, 24(8): 2037-2047 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608027.htm
    [9]
    邢运龙, 李艾华, 崔智高, 等. 改进核相关滤波的运动目标跟踪算法[J]. 红外与激光工程, 2016, 45: s126004. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2016S1037.htm

    Xing Yunlong, Li Aihua, Cui Zhigao, et al. Moving target tracking algorithm based on improved kernelized correlation filter. Infrared and Laser Engineering, 2016, 45: s126004 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2016S1037.htm
    [10]
    陈东成, 朱明, 高文, 等. 在线加权多示例学习实时目标跟踪[J]. 光学 精密工程, 2014, 22(6): 1661-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201406035.htm

    Chen Dongcheng, Zhu Ming, Gao Wen, et al. Real-time object tracking via online weighted multiple instance learning. Optics and Precision Engineering, 2014, 22(6): 1661-1667 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201406035.htm
    [11]
    Zhang Kaihua, Lei Zhang, Liu Qingshan, et al. Fast visual tracking via dense spatio-temporal context learning[C]//Proceedings of the European Conference on Computer Vision. 2014: 127-141.
    [12]
    刘威, 赵文杰, 李成. 时空上下文学习长时目标跟踪[J]. 光学学报, 2016, 36: 0115001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201601023.htm

    Liu Wei, Zhao Wenjie, Li Cheng. Long-term visual tracking based on spatio-temporal context. Acta Optica Sinica, 2016, 36: 0115001 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201601023.htm
    [13]
    张红颖, 郑轩. 基于双目标模型的时空上下文跟踪算法[J]. 光学 精密工程, 2016, 24(5): 1215-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201605033.htm

    Zhang Hongying, Zheng Xuan. Spatio-temporal context tracking algorithm based on dual-object model. Optics and Precision Engineering, 2016, 24(5): 1215-1223 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201605033.htm
    [14]
    徐建强, 陆耀. 一种基于加权时空上下文的鲁棒视觉跟踪算法[J]. 自动化学报, 2015, 41(11): 1901-1912. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201511007.htm

    Xu Jianqiang, Lu Yao. Robust visual tracking via weighted spatio-temporal context learning. Acta Automatica Sinica, 2015, 41(11): 1901-1912 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201511007.htm
    [15]
    Gong Yuanhao, Sbalzarini Ivo F. Curvature filters efficiently reduce certain variational energies[J]. IEEE Trans Image Processing, 2017, 26(4): 1786-1798.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article views (1554) PDF downloads(242) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return