Citation: | Zhai Yonggui, Li Jixiao, Wang Hongguang, et al. Adaptive scanning method for multipactor threshold prediction in microwave devices[J]. High Power Laser and Particle Beams, 2018, 30: 073006. doi: 10.11884/HPLPB201830.170530 |
[1] |
Vaughan J R M. Multipactor[J]. IEEE Trans Electron Devices, 1988, 35 (7): 1172-1180. doi: 10.1109/16.3387
|
[2] |
Kishek R A, Lau Y Y, Ang L K, et al. Multipactor discharge on metals and dielectrics: Historical review and recent theories[J]. Physics of Plasmas, 1998, 5(5): 2120-2126. doi: 10.1063/1.872883
|
[3] |
Ang L K, Lau Y Y, Kishek R, et al. Power deposited on a dielectric by multipactor[J]. IEEE Transactions on Plasma Science, 1998, 26 (3): 290-295. doi: 10.1109/27.700756
|
[4] |
Nieter C, Stoltz P H, Roark C, et al. Modeling of multipacting in RF structures Using VORPAL[C]//AIP Conf Proc, 2010.
|
[5] |
Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. New York: Taylor & Francis, 2004: 1-400.
|
[6] |
Computer Simulation Technology (CST) Center 2012 Framingham M A http://www.cst.com[2015-10-21].
|
[7] |
Goplen B, Ludeking L, Smith D, et al. User-configurable MAGIC for electromagnetic PIC calculations[J]. Computer Physics Communications, 1995, 87 (1/2): 54-86.
|
[8] |
李永东, 王洪广, 刘纯亮, 等. 高功率微波器件2.5维通用粒子模拟软件——尤普[J]. 强激光与粒子束, 2009, 21(12): 1866-1870. http://www.hplpb.com.cn/article/id/4307
Li Yongdong, Wang Hongguang, Liu Chunliang, et al. 2.5-dimensional electromagnetic particle-in-cell code—UNIPIC for high power microwave simulations. High Power Laser and Particle Beams, 2009, 21 (12): 1866-1870 http://www.hplpb.com.cn/article/id/4307
|
[9] |
Li Y, Cui W Z, Wang H G. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model[J]. Physics of Plasmas, 2015, 22 (5): 1172-2126.
|
[10] |
You J W, Wang H G, Zhang J F, et al. Accurate numerical method for multipactor analysis in microwave devices[J]. IEEE Transactions on Electron Devices, 2014, 61 (5): 1546-1552. doi: 10.1109/TED.2014.2313027
|
[11] |
王洪广, 翟永贵, 李记肖, 等. 基于频域电磁场的微波器件微放电阈值快速粒子模拟[J]. 物理学报, 2016, 65(23): 275-281. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201623035.htm
Wang Hongguang, Zhai Yonggui, Li Jixiao, et al. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions. Acta Physica Sinica, 2016, 65 (23): 275-281 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201623035.htm
|
[12] |
Vaughan J R M. New formula for secondary emission yield[J]. IEEE Transactions on Electron Devices, 1989, 36(9): 1963-1967. doi: 10.1109/16.34278
|
[13] |
Hatch A J, Williams H B. The secondary electron resonance mechanism of low-pressure high-frequency gas breakdown[J]. Journal of Applied Physics, 1954, 25 (4): 417-423. doi: 10.1063/1.1721656
|
[14] |
Hatch A J, Williams H B. Multipacting modes of high-frequency gaseous breakdown[J]. Physical Review, 1958, 112(3): 681-685. doi: 10.1103/PhysRev.112.681
|
[15] |
Woo R, Ishimaru A. A similarity principle for multipacting discharges[J]. Journal of Applied Physics, 1967, 38 (13): 5240-5244. doi: 10.1063/1.1709307
|
[16] |
Wachowski H. Breakdown in waveguides due to the multipactor effect[R]. TDR-269-(9990)-5, 1964.
|
[17] |
李永东, 闫杨娇, 林舒, 等. 微波器件微放电阈值计算的快速单粒子蒙特卡罗方法[J]. 物理学报, 2014, 63(4): 317-321. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201404045.htm
Li Yongdong, Yan Yangjiao, Lin Shu, et al. A fast single particle Monte-Carlo method of computing the breakdown threshold of multipactor in microwave device. Acta Physica Sinica, 2014, 63(4): 317-321 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201404045.htm
|
[18] |
Li Y, Cui W Z, Wang H G. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model[J]. Physics of Plasmas, 2015, 22(5): 1172-2126.
|
[1] | Li Shumin, Li Yongdong, Liu Zhen. Particle-in-cell simulation of field breakdown in a relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2017, 29(06): 063001. doi: 10.11884/HPLPB201729.170038 |
[2] | Fan Zhuangzhuang, Wang Hongguang, Lin Shu, Li Yongdong, Liu Chunliang. Two dimensional particle-in-cell simulation of electron multipactor on high power microwave dielectric window surface[J]. High Power Laser and Particle Beams, 2014, 26(06): 063012. doi: 10.11884/HPLPB201426.063012 |
[3] | Zhang Pengfei, Sun Fengju, Yang Hailiang, Sun Jianfeng, Sun Jiang, Li Jingya. Electron beam pinch simulative study of rod-pinch diode driven by 40-stage FLTD module[J]. High Power Laser and Particle Beams, 2013, 25(11): 3065-3068. doi: 10.3788/HPLPB20132511.3065 |
[4] | liao chen, zhou jun, liu dagang, liu shenggang. Improved parallel algorithms for 3D PIC simulation[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- . |
[5] | yang chao, liu dagang, zhou jun, xia mengzhong, yang yupeng, xu xuguang. Implementation of anode grid model in particle-in-cell simulation[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- . |
[6] | liu dagang, zhou jun, yang chao. Electromagnetic field algorithms in particle-in-cell simulation[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- . |
[7] | qin feng, chang anbi, ding enyan, luo min. Particle-in-cell simulation of pseudospark switch based on particle-in-cell plus Monte-Carlo collision method[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- . |
[8] | ding shuai, jia baofu, zhu zhaojun, li feixue. Particle simulation of 5.8 GHz magnetron[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- . |
[9] | wang zhan-liang, gong yu-bin, wei yan-yu, gong hua-rong, yue ling-na. 3D simulation of periodic cusped magnetic focusing sheet electron beam[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- . |
[10] | chen dai-bing, wang dong, fan zhi-kai, meng fan-bao. Particle simulation of multi-frequency magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2007, 19(10): 0- . |
[11] | lei lu-rong, fan zhi-kai, huang hua, he hu. Particle simulation of relativistic klystron amplifier double-gap output cavity[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- . |
[12] | chen hong-bin, hu lin-lin, ma guo-wu, meng fan-bao, zhou chuan-ming. Particle simulation and experimental study of subnanosecond millimeter wave backward wave oscillator[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- . |
[13] | xiao ren-zhen, liu guo-zhi, lin yu-zheng. PIC simulation of air-filled high power microwave generator with coaxial slow wave structure[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- . |
[14] | bai xian-chen, yang jian-hua, zhang jian-de. Simulation and diagnosis of synchronized intense beams produced with a dual-cathode diode[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- . |
[15] | zhou jun, zhu da-jun, liu da-gang, liu sheng-gang. Design and realization of waveguide excitation source in particle-in-cell simulation[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- . |
[16] | liu da-gang, zhu da-jun, zhou jun, hu min, liu sheng-gang. Design of 3D particle-in-cell simulation software[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- . |
[17] | liao ping, yang zhong hai, lei wen qiang, xiao li. Study on 3D MAFIA PIC simulation for microwave tube electron gun[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- . |
[18] | zhuo hong bin, hu qing feng, chang wen wei, xu han. Realization of explosion electron emission boundary in a plasma simulation code[J]. High Power Laser and Particle Beams, 2003, 15(11): 0- . |
[19] | liu lie, liu yong-gui, li chuan-lu. Particle simulation of RBWO filled with neutral gas[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- . |
[20] | ge cheng-liang, liang zheng, yang zi-qiang. Particle simulation on S-band relativistic two-stream amplifier[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- . |
1. | 任三孩,古松,谭谦,叶新,方进勇. 电子诱发波导微放电实验研究. 强激光与粒子束. 2023(03): 115-120 . ![]() | |
2. | 李韵,封国宝,谢贵柏,苗光辉,李小军,崔万照,贺永宁. 大功率铁磁性微波部件微放电演变机理与抑制. 强激光与粒子束. 2022(06): 33-38 . ![]() | |
3. | 林舒,翟永贵,张磊,王洪广,王瑞,李永东,刘纯亮. 粒子模拟在空间大功率微波器件微放电效应研究中的应用. 真空电子技术. 2019(06): 55-61 . ![]() |