Volume 30 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
Zhai Yonggui, Li Jixiao, Wang Hongguang, et al. Adaptive scanning method for multipactor threshold prediction in microwave devices[J]. High Power Laser and Particle Beams, 2018, 30: 073006. doi: 10.11884/HPLPB201830.170530
Citation: Zhai Yonggui, Li Jixiao, Wang Hongguang, et al. Adaptive scanning method for multipactor threshold prediction in microwave devices[J]. High Power Laser and Particle Beams, 2018, 30: 073006. doi: 10.11884/HPLPB201830.170530

Adaptive scanning method for multipactor threshold prediction in microwave devices

doi: 10.11884/HPLPB201830.170530
  • Received Date: 2017-12-28
  • Rev Recd Date: 2018-03-04
  • Publish Date: 2018-07-15
  • Without the power scanning function, the traditional Particle-in-Cell simulation software needs to perform many times in order to achieve multipactor threshold prediction. Therefore, an adaptive scanning method is proposed without considering the self-consistent field generated by electrons. Under the effect of the electromagnetic field distribution calculated by MSAT, the electron motion is tracked and updated with leapfrog algorithm. Secondary electrons are released once electrons reach the boundaries of the simulation region. The criterion for determining multipactor occurrence is established according to the particle number curve via the multipactor simulation. Meanwhile, the power input is adaptively adjusted by the bisection method so that the multipactor threshold can be automatically determined with a given initial power. For verification, multipactor thresholds of stepped impedance transformer and coaxial cavity filters obtained with adaptive-scanning method are compared with experiments. And the simulation results accord well with the experimental data.
  • loading
  • [1]
    Vaughan J R M. Multipactor[J]. IEEE Trans Electron Devices, 1988, 35 (7): 1172-1180. doi: 10.1109/16.3387
    [2]
    Kishek R A, Lau Y Y, Ang L K, et al. Multipactor discharge on metals and dielectrics: Historical review and recent theories[J]. Physics of Plasmas, 1998, 5(5): 2120-2126. doi: 10.1063/1.872883
    [3]
    Ang L K, Lau Y Y, Kishek R, et al. Power deposited on a dielectric by multipactor[J]. IEEE Transactions on Plasma Science, 1998, 26 (3): 290-295. doi: 10.1109/27.700756
    [4]
    Nieter C, Stoltz P H, Roark C, et al. Modeling of multipacting in RF structures Using VORPAL[C]//AIP Conf Proc, 2010.
    [5]
    Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. New York: Taylor & Francis, 2004: 1-400.
    [6]
    Computer Simulation Technology (CST) Center 2012 Framingham M A http://www.cst.com[2015-10-21].
    [7]
    Goplen B, Ludeking L, Smith D, et al. User-configurable MAGIC for electromagnetic PIC calculations[J]. Computer Physics Communications, 1995, 87 (1/2): 54-86.
    [8]
    李永东, 王洪广, 刘纯亮, 等. 高功率微波器件2.5维通用粒子模拟软件——尤普[J]. 强激光与粒子束, 2009, 21(12): 1866-1870. http://www.hplpb.com.cn/article/id/4307

    Li Yongdong, Wang Hongguang, Liu Chunliang, et al. 2.5-dimensional electromagnetic particle-in-cell code—UNIPIC for high power microwave simulations. High Power Laser and Particle Beams, 2009, 21 (12): 1866-1870 http://www.hplpb.com.cn/article/id/4307
    [9]
    Li Y, Cui W Z, Wang H G. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model[J]. Physics of Plasmas, 2015, 22 (5): 1172-2126.
    [10]
    You J W, Wang H G, Zhang J F, et al. Accurate numerical method for multipactor analysis in microwave devices[J]. IEEE Transactions on Electron Devices, 2014, 61 (5): 1546-1552. doi: 10.1109/TED.2014.2313027
    [11]
    王洪广, 翟永贵, 李记肖, 等. 基于频域电磁场的微波器件微放电阈值快速粒子模拟[J]. 物理学报, 2016, 65(23): 275-281. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201623035.htm

    Wang Hongguang, Zhai Yonggui, Li Jixiao, et al. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions. Acta Physica Sinica, 2016, 65 (23): 275-281 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201623035.htm
    [12]
    Vaughan J R M. New formula for secondary emission yield[J]. IEEE Transactions on Electron Devices, 1989, 36(9): 1963-1967. doi: 10.1109/16.34278
    [13]
    Hatch A J, Williams H B. The secondary electron resonance mechanism of low-pressure high-frequency gas breakdown[J]. Journal of Applied Physics, 1954, 25 (4): 417-423. doi: 10.1063/1.1721656
    [14]
    Hatch A J, Williams H B. Multipacting modes of high-frequency gaseous breakdown[J]. Physical Review, 1958, 112(3): 681-685. doi: 10.1103/PhysRev.112.681
    [15]
    Woo R, Ishimaru A. A similarity principle for multipacting discharges[J]. Journal of Applied Physics, 1967, 38 (13): 5240-5244. doi: 10.1063/1.1709307
    [16]
    Wachowski H. Breakdown in waveguides due to the multipactor effect[R]. TDR-269-(9990)-5, 1964.
    [17]
    李永东, 闫杨娇, 林舒, 等. 微波器件微放电阈值计算的快速单粒子蒙特卡罗方法[J]. 物理学报, 2014, 63(4): 317-321. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201404045.htm

    Li Yongdong, Yan Yangjiao, Lin Shu, et al. A fast single particle Monte-Carlo method of computing the breakdown threshold of multipactor in microwave device. Acta Physica Sinica, 2014, 63(4): 317-321 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201404045.htm
    [18]
    Li Y, Cui W Z, Wang H G. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model[J]. Physics of Plasmas, 2015, 22(5): 1172-2126.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (1077) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return