Citation: | Zhai Yonggui, Li Jixiao, Wang Hongguang, et al. Adaptive scanning method for multipactor threshold prediction in microwave devices[J]. High Power Laser and Particle Beams, 2018, 30: 073006. doi: 10.11884/HPLPB201830.170530 |
[1] |
Vaughan J R M. Multipactor[J]. IEEE Trans Electron Devices, 1988, 35 (7): 1172-1180. doi: 10.1109/16.3387
|
[2] |
Kishek R A, Lau Y Y, Ang L K, et al. Multipactor discharge on metals and dielectrics: Historical review and recent theories[J]. Physics of Plasmas, 1998, 5(5): 2120-2126. doi: 10.1063/1.872883
|
[3] |
Ang L K, Lau Y Y, Kishek R, et al. Power deposited on a dielectric by multipactor[J]. IEEE Transactions on Plasma Science, 1998, 26 (3): 290-295. doi: 10.1109/27.700756
|
[4] |
Nieter C, Stoltz P H, Roark C, et al. Modeling of multipacting in RF structures Using VORPAL[C]//AIP Conf Proc, 2010.
|
[5] |
Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. New York: Taylor & Francis, 2004: 1-400.
|
[6] |
Computer Simulation Technology (CST) Center 2012 Framingham M A http://www.cst.com[2015-10-21].
|
[7] |
Goplen B, Ludeking L, Smith D, et al. User-configurable MAGIC for electromagnetic PIC calculations[J]. Computer Physics Communications, 1995, 87 (1/2): 54-86.
|
[8] |
李永东, 王洪广, 刘纯亮, 等. 高功率微波器件2.5维通用粒子模拟软件——尤普[J]. 强激光与粒子束, 2009, 21(12): 1866-1870. http://www.hplpb.com.cn/article/id/4307
Li Yongdong, Wang Hongguang, Liu Chunliang, et al. 2.5-dimensional electromagnetic particle-in-cell code—UNIPIC for high power microwave simulations. High Power Laser and Particle Beams, 2009, 21 (12): 1866-1870 http://www.hplpb.com.cn/article/id/4307
|
[9] |
Li Y, Cui W Z, Wang H G. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model[J]. Physics of Plasmas, 2015, 22 (5): 1172-2126.
|
[10] |
You J W, Wang H G, Zhang J F, et al. Accurate numerical method for multipactor analysis in microwave devices[J]. IEEE Transactions on Electron Devices, 2014, 61 (5): 1546-1552. doi: 10.1109/TED.2014.2313027
|
[11] |
王洪广, 翟永贵, 李记肖, 等. 基于频域电磁场的微波器件微放电阈值快速粒子模拟[J]. 物理学报, 2016, 65(23): 275-281. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201623035.htm
Wang Hongguang, Zhai Yonggui, Li Jixiao, et al. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions. Acta Physica Sinica, 2016, 65 (23): 275-281 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201623035.htm
|
[12] |
Vaughan J R M. New formula for secondary emission yield[J]. IEEE Transactions on Electron Devices, 1989, 36(9): 1963-1967. doi: 10.1109/16.34278
|
[13] |
Hatch A J, Williams H B. The secondary electron resonance mechanism of low-pressure high-frequency gas breakdown[J]. Journal of Applied Physics, 1954, 25 (4): 417-423. doi: 10.1063/1.1721656
|
[14] |
Hatch A J, Williams H B. Multipacting modes of high-frequency gaseous breakdown[J]. Physical Review, 1958, 112(3): 681-685. doi: 10.1103/PhysRev.112.681
|
[15] |
Woo R, Ishimaru A. A similarity principle for multipacting discharges[J]. Journal of Applied Physics, 1967, 38 (13): 5240-5244. doi: 10.1063/1.1709307
|
[16] |
Wachowski H. Breakdown in waveguides due to the multipactor effect[R]. TDR-269-(9990)-5, 1964.
|
[17] |
李永东, 闫杨娇, 林舒, 等. 微波器件微放电阈值计算的快速单粒子蒙特卡罗方法[J]. 物理学报, 2014, 63(4): 317-321. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201404045.htm
Li Yongdong, Yan Yangjiao, Lin Shu, et al. A fast single particle Monte-Carlo method of computing the breakdown threshold of multipactor in microwave device. Acta Physica Sinica, 2014, 63(4): 317-321 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201404045.htm
|
[18] |
Li Y, Cui W Z, Wang H G. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model[J]. Physics of Plasmas, 2015, 22(5): 1172-2126.
|
[1] | Liu Xin, Yuan Yonggang, Wu Jian, He Jingtao, Feng Peng, Qu Jinhui, Liu Yixin, Qian Yikun, Zhang Song, Zhao Xiansheng. Research on location method of radiation action based on Si-PM array[J]. High Power Laser and Particle Beams, 2022, 34(6): 066001. doi: 10.11884/HPLPB202234.210363 |
[2] | Yang Hanwu, Xun Tao, Gao Jingming, Zhang Zicheng. Design of a vacuum interface of a microsecond timescale HPM diode with guiding magnetic field[J]. High Power Laser and Particle Beams, 2022, 34(9): 095002. doi: 10.11884/HPLPB202234.210472 |
[3] | Cao Lei, Zhang Yaofeng, Yang Yang, Huang Jianwei, Zhang Xiaole. Measurement of environmental level X, γ dose with conversion of complete spectra without deconvolution method of MC simulation[J]. High Power Laser and Particle Beams, 2022, 34(2): 026005. doi: 10.11884/HPLPB202234.210300 |
[4] | Ma Yuhua, Li Hang, Yang Xin, Li Rundong, Huang Hongwen. Mathematical model establishment, simulation and reconstruction of PGAI[J]. High Power Laser and Particle Beams, 2022, 34(5): 056004. doi: 10.11884/HPLPB202234.210551 |
[5] | Jia Qinggang, Yang Bo, Xu Haibo, She Ruogu. Study on imaging simulation of electronic photography[J]. High Power Laser and Particle Beams, 2021, 33(5): 054002. doi: 10.11884/HPLPB202133.200300 |
[6] | Wang Zhongma, Huang Liansheng, Fu Peng, Huang Ronglin, Chen Xiaojiao, Wang Zhenshang, Zeng Sizhe. Calculation of pulse current of high power converter[J]. High Power Laser and Particle Beams, 2019, 31(3): 036003. doi: 10.11884/HPLPB201931.180283 |
[7] | Geng Lidong, He Yang, Yuan Jianqiang, Wang Minhua, Cao Longbo, Xie Weiping. Physical characteristics of rod-pinch diode with different concentricity[J]. High Power Laser and Particle Beams, 2018, 30(11): 115003. doi: 10.11884/HPLPB201830.180181 |
[8] | Dong Ye, Liu Qingxiang, Li Xiangqiang, Zhou Haijing, Dong Zhiwei. Monte Carlo simulation of a novel multipacting cathode[J]. High Power Laser and Particle Beams, 2018, 30(6): 063005. doi: 10.11884/HPLPB201830.170431 |
[9] | Qu Junfu, Ma Xun, Zhao Juan, Li Hongtao. Simulation of rod-pinch diode at hundreds of thousands of volts[J]. High Power Laser and Particle Beams, 2018, 30(5): 055003. doi: 10.11884/HPLPB201830.170432 |
[10] | Guo Fan, Jiang Jihao, Gong Boyi, Chen Lin, Zou Wenkang, Wang Meng, Xie Weiping. Calculation of impedance of azimuthal transmission line in induction voltage adder accelerator[J]. High Power Laser and Particle Beams, 2016, 28(02): 025001. doi: 10.11884/HPLPB201628.025001 |
[11] | Liu Yudong, Huang Liangsheng, Wang Sheng, Wang Na, Li Yong. Impedances and beam instability in RCS/CSNS[J]. High Power Laser and Particle Beams, 2013, 25(02): 465-470. doi: 10.3788/HPLPB20132502.0465 |
[12] | Dong Ye, Dong Zhiwei, Yang Wenyuan, Zhou Qianhong, Zhou Haijing. Monte Carlo simulation of multipactor discharge suppressing on grooved dielectric surface[J]. High Power Laser and Particle Beams, 2013, 25(02): 399-406. doi: 10.3788/HPLPB20132502.0399 |
[13] | Zhang Pengfei, Sun Fengju, Yang Hailiang, Sun Jianfeng, Sun Jiang, Li Jingya. Electron beam pinch simulative study of rod-pinch diode driven by 40-stage FLTD module[J]. High Power Laser and Particle Beams, 2013, 25(11): 3065-3068. doi: 10.3788/HPLPB20132511.3065 |
[14] | Song Guzhou, Wang Kuilu, Ma Jiming, Zhou Ming. Analysis on coupling between scintillator and lens in radiographic imaging system[J]. High Power Laser and Particle Beams, 2012, 24(02): 471-475. doi: 10.3788/HPLPB20122402.0475 |
[15] | song guzhou, zhu hongquan, han changcai, ma jiming, zhang zhanhong, li hongyun, yang hailiang. Imaging measurement of X-ray spot of rod-pinch diode radiographic source[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[16] | song shengyi, xie weiping, wang wendou. Analysis of power flow for plate-to-cone transition in vacuum transmission line[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- . |
[17] | cao yi-bing, he jun-tao, zhang jian-de. Novel low-impedance transit-time radiation oscillator[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- . |
[18] | chen lin, xie wei-ping, deng jian-jun. Development of rod-pinch diode for flash X-ray radiography[J]. High Power Laser and Particle Beams, 2006, 18(04): 0- . |
[20] | liu jinliang, tan qimei, li chuanlu. EFFECT OF FARADAY CUP IMPEDANCE ON ELECTRON BEAM CURRENT OF DIODE[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- . |
1. | 屈俊夫,冯元伟,耿力东,李洪涛. 杆箍缩二极管阳极杆粒子生成模型研究. 物理学报. 2022(22): 207-217 . ![]() | |
2. | 耿力东,谢卫平,袁建强,王敏华,曹龙博,付佳斌,赵小明,何泱. 阳极杆箍缩二极管的理论模型及物理特性. 强激光与粒子束. 2018(08): 116-122 . ![]() | |
3. | 耿力东,谢卫平,袁建强,王敏华,曹龙博,张思群,赵小明,何泱. 1MV杆箍缩二极管辐射特性实验研究. 原子能科学技术. 2018(08): 1512-1518 . ![]() | |
4. | 耿力东,何泱,袁建强,王敏华,曹龙博,谢卫平. 同心度对杆箍缩二极管物理特性的影响. 强激光与粒子束. 2018(11): 140-145 . ![]() | |
5. | 马勋,袁建强,刘宏伟,王凌云,姜苹. 工业X光二极管重复频率实验研究. 强激光与粒子束. 2016(02): 175-179 . ![]() |