Lei Pengli, Hou Jing, Wang Jian, et al. Smoothing of mid-spatial frequency errors by computer controlled surface processing[J]. High Power Laser and Particle Beams, 2019, 31: 111002. doi: 10.11884/HPLPB201931.190177
Citation: Duan Jiazhu, Zhao Xiangjie, Hu Qiqi, et al. Volume Bragg grating filters and its spectral imaging application[J]. High Power Laser and Particle Beams, 2018, 30: 079001. doi: 10.11884/HPLPB201830.180023

Volume Bragg grating filters and its spectral imaging application

doi: 10.11884/HPLPB201830.180023
  • Received Date: 2018-01-19
  • Rev Recd Date: 2018-03-19
  • Publish Date: 2018-07-15
  •  It is a new path to achieve hyperspectral imaging of objective area by employing the wavelength selectivity of thick volume Bragg gratings(VBGs). Based on the rigorous coupled wave theory, grating structures were optimally designed, fabricating craft were explored, the imaging system was constructed and the imaging ability of the VBG was verified. The results showed that: to obtain narrow filtered bandpass, we should improve the ratio of grating thickness and period, as well as strictly control the divergence angle of incident beam. For the beam quality of writing laser beams, vibration and polarization will all have large effect on the grating's fringe homogeneity, it is necessary to optimize the writing process by adopting vibration-proof measures, optimizing writing light to uniform beam and tuning polarization directions parallel of both writing light beams to promote grating's diffraction efficiency and quality. The two-dimensional spatial imaging ability of VBG were validated. Under transmission incidence of wide spectral light source, the filtered bandpass was about 5 nm and spatial resolution was about 4 lines/mm; under diffuse reflection incidence, spatial resolution was about 4.9 lines/mm by adopting grating pair to compensate the dispersion.
  • [1]
    Geissler P E, Greenberg R, Hoppa G, et al. Evolution of lineaments on Europa: Clues from Galileo multispectral imaging observa-tions[J]. Icarus, 1998, 135: 107-126. doi: 10.1006/icar.1998.5980
    [2]
    Colarusso P, Kidder L H, Levein I W, et al. Infrared spectroscopic imaging: From planetary to cellular systems[J]. Applied Spectroscopy, 1998, 52: 106-120. doi: 10.1366/0003702981942401
    [3]
    Levenson R M, Mansfield J R. Multispectral imaging in biology and medicine: Slices of life[J]. Cytom A, 2006, 69: 748-758.
    [4]
    Zhang L, Small G W. Automated detection of chemical vapors by pattern recognition analysis of passive multispectral infrared remote sensing imaging data[J]. Applied Spectroscopy, 2002, 56: 1082-1093. doi: 10.1366/000370202321274908
    [5]
    Hiraoka Y, Shimi T, Haraguchi T. Multispectral imaging fluorescence microscopy for living cells[J]. Cell Structure and Function, 2002, 27: 367-374. doi: 10.1247/csf.27.367
    [6]
    Shi T, DiMarzio C A. Multispectral method for skin imaging: development and validation[J]. Applied Optics, 2007, 46: 8619-8626.
    [7]
    Romier J, Selves J, Gastellu-Etchegorry J. Imaging spectrometer based on an acousto-optic tunable filter[J]. Rev Sci Instrum, 1998, 69: 2859-2867. doi: 10.1063/1.1149025
    [8]
    Shingu H, Homma K, Kurosaki H, et al. Field observation of surface conditions using LCTF spectro-polarimeter[C]// Proc of SPIE. 2003, 5017: 116-127.
    [9]
    Blais-Ouellette S, Daigle O, Taylor K. The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging[C]//Proc of SPIE. 2006: 62695H.
    [10]
    Verhaegen M, Lessard S, Blais-Ouellette S. Narrow band SWIR hyperspectral imaging: a new approach based on volume Bragg grating[C]//Proc of SPIE. 2012: 83740G.
    [11]
    Kogelnik H. Coupled wave theory for thick hologram gratings[J]. Bell Syst Tech J, 1969, 48: 2909-2945. doi: 10.1002/j.1538-7305.1969.tb01198.x
    [12]
    段佳著, 赵祥杰, 张大勇. 基于透射式体全息光栅的光学相控阵放大级研究[J]. 光学学报, 2014, 34: 0405002.

    Duan Jiazhu, Zhao Xiangjie, Zhang Dayong. Design of optical phased arrays amplifier stage based on volume holographic grating. Acta Optica Sinica, 2014, 34: 0405002
    [13]
    Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 1981, 71(7): 811-818. doi: 10.1364/JOSA.71.000811
    [14]
    Moharam M G, Gaylord T K, Magnusson R. Criteria for Bragg regime diffraction by phased gratings[J]. Optics Communication, 1980, 32(1): 14-18.
    [15]
    Laskin A, Laskin V. π Shaper-refractive beam shaping optics for advanced laser technologies[J]. Journal of Physics: Conference Series, 2011, 276: 012171.
  • Relative Articles

    [1]Jiang Jinbo, Ren Yingjie, Li Yi, Zhang Jiaxing, Zhao Xin, Xu Lin, Ouyang Shanchuan. Research on waveform optimization for quasi-square wave pulse source based on PFN-Marx[J]. High Power Laser and Particle Beams, 2025, 37(3): 035008. doi: 10.11884/HPLPB202537.240315
    [2]Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320
    [3]Lu Xicheng, Qiu Yang, Jiang Ling, Wang Haibo, Tian Jin, Guo Xinwei. Time reversal cavity path and its influence on signal to noise ratio[J]. High Power Laser and Particle Beams, 2021, 33(12): 123006. doi: 10.11884/HPLPB202133.210171
    [4]Tao Xuefeng, Liu Kun. Pulse shaping method for compulsator[J]. High Power Laser and Particle Beams, 2018, 30(9): 095001. doi: 10.11884/HPLPB201830.170325
    [5]Zhong Xuanming, Liao Cheng. Spatial power combining algorithm based on space-frequency time-reversal technology[J]. High Power Laser and Particle Beams, 2016, 28(11): 113004. doi: 10.11884/HPLPB201628.160123
    [6]Wang Qiushi, Luo Jirun, Peng Shuyuan. Optimization of distributed-loss circuit of gyrotron traveling wave amplifier using multi-objective genetic algorithm[J]. High Power Laser and Particle Beams, 2015, 27(09): 093004. doi: 10.11884/HPLPB201527.093004
    [7]Yang Yang, Long Yunfei, Wu Wei, Yang Xiaomin, Liu Kai. Eliminating phase error caused by multi-path effect for phase measuring profilometry

    [J]. High Power Laser and Particle Beams, 2015, 27(04): 041013. doi: 10.11884/HPLPB201527.041013
    [8]Zhang Meng, Liao Lang. Optimization design of photo-injector using genetic algorithm[J]. High Power Laser and Particle Beams, 2014, 26(02): 025104. doi: 10.3788/HPLPB201426.025104
    [9]Lei Dechuan, Chen Hao, Wang Yuan, Zhang Chengxin, Chen Yunbin, Hu Dongcai. Accelerating simultaneous algebraic reconstruction technique by multi CUDA-enabled GPU[J]. High Power Laser and Particle Beams, 2013, 25(09): 2418-2422. doi: 10.3788/HPLPB20132509.2418
    [10]Yang Chengwu, Liu Wenqing, Zhang Yujun. Algorithm for retrieving vertical visibility of laser diode ceilometer[J]. High Power Laser and Particle Beams, 2012, 24(02): 307-311. doi: 10.3788/HPLPB20122402.0307
    [11]chen bo, cheng chengqi, guo shide, pu guoliang, geng zexun. Unsymmetrical multi-limit iterative blind deconvolution algorithm for adaptive optics image restoration[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [12]zhang yunfei, he jianguo, wang yajun, luo lili, ji fang, huang wen. Analysis of dwell time algorithm based on optimization theory for computer controlled optical surfacing[J]. High Power Laser and Particle Beams, 2011, 23(12): 17-18.
    [13]zhang yan, yang chunping, guo jing, kang meiling, wu jian. Spectrum extraction mode for Fourier telescopy in laboratory[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [14]li xiangqiang, liu qingxiang, zhang jianqiong, zhao liu. Design and experiment of S-band multiport radial line power divider[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]tang lei, shu zhifeng, dong jihui, yue bin, shen fahua, dong jingjing, sun dongsong. Measurement of slant visibility and its iteration method with diode-laser lidar[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [16]fang zhiheng, zhang mengjie, wang wei, dong jiaqin, ye junjian, xiong jun, wang ruirong, wang chen, sun jinren, wu jiang, fu sizu, gu yuan, wang shiji. Laser pulse shape optimization for flat target compression[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]han dao-wen, liu wen-qing, zhang yu-jun, liu jian-guo, lu yi-huai, zhao nan-jing. Memorable glide window integral algorithm for retrieving cloud height[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [18]zeng fa, tan qiao-feng, wei xiao-feng, xiang yong, yan ying-bai, jin guo-fan. High precision reconstruction of distorted wavefront in high power laser system[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [19]zhang wei, zhang xiao-bo, shu fang-jie, li yong-ping. Design of diffractive optical elements by step iterative algorithm[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [20]li da-hai, zhao xiao-feng, chen huai-xin, chen zhen-pei, chen bo, jing feng. Algorithm study of wavefront reconstruction based on the cyclic radial shear interferometer[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(4)

    1. 唐文翰. 多光缆的光纤通信信号多路传输系统. 电子制作. 2019(12): 3-4+29 .
    2. 向波,张裔智. 基于最低能耗约束的光纤网络通信优化模型设计. 激光杂志. 2018(04): 148-151 .
    3. 王冠,陈辉,李宁. 多光缆的光纤通信信号多路传输系统. 激光杂志. 2018(08): 178-182 .
    4. 钟选明,廖成. 基于空频时间反演的空间功率合成技术. 强激光与粒子束. 2016(11): 85-88 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.8 %FULLTEXT: 28.8 %META: 68.7 %META: 68.7 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.7 %其他: 2.7 %其他: 0.4 %其他: 0.4 %China: 0.4 %China: 0.4 %India: 0.1 %India: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.9 %上海: 0.9 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %六安: 0.1 %六安: 0.1 %内江: 0.1 %内江: 0.1 %北京: 30.1 %北京: 30.1 %南京: 0.6 %南京: 0.6 %台州: 0.5 %台州: 0.5 %周口: 0.1 %周口: 0.1 %哈尔科夫: 0.2 %哈尔科夫: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.1 %大连: 0.1 %安康: 0.3 %安康: 0.3 %宣城: 0.2 %宣城: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.8 %张家口: 0.8 %成都: 0.2 %成都: 0.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.4 %济南: 0.4 %深圳: 0.1 %深圳: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.4 %湖州: 0.4 %漯河: 0.3 %漯河: 0.3 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.3 %绍兴: 0.3 %罗马: 0.1 %罗马: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 36.7 %西宁: 36.7 %西安: 0.9 %西安: 0.9 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.9 %郑州: 0.9 %重庆: 0.1 %重庆: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.1 %长治: 0.1 %其他其他ChinaIndiaSeattleTaiwan, China[]上海中山临汾丹东六安内江北京南京台州周口哈尔科夫哥伦布大连安康宣城广州张家口成都扬州新乡晋城普洱杭州武汉沈阳济南深圳渭南湖州漯河石家庄秦皇岛绍兴罗马美国伊利诺斯芝加哥芒廷维尤芝加哥衢州西宁西安贵阳赣州运城郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1414) PDF downloads(206) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return