Citation: | Duan Jiazhu, Zhao Xiangjie, Hu Qiqi, et al. Volume Bragg grating filters and its spectral imaging application[J]. High Power Laser and Particle Beams, 2018, 30: 079001. doi: 10.11884/HPLPB201830.180023 |
[1] |
Geissler P E, Greenberg R, Hoppa G, et al. Evolution of lineaments on Europa: Clues from Galileo multispectral imaging observa-tions[J]. Icarus, 1998, 135: 107-126. doi: 10.1006/icar.1998.5980
|
[2] |
Colarusso P, Kidder L H, Levein I W, et al. Infrared spectroscopic imaging: From planetary to cellular systems[J]. Applied Spectroscopy, 1998, 52: 106-120. doi: 10.1366/0003702981942401
|
[3] |
Levenson R M, Mansfield J R. Multispectral imaging in biology and medicine: Slices of life[J]. Cytom A, 2006, 69: 748-758.
|
[4] |
Zhang L, Small G W. Automated detection of chemical vapors by pattern recognition analysis of passive multispectral infrared remote sensing imaging data[J]. Applied Spectroscopy, 2002, 56: 1082-1093. doi: 10.1366/000370202321274908
|
[5] |
Hiraoka Y, Shimi T, Haraguchi T. Multispectral imaging fluorescence microscopy for living cells[J]. Cell Structure and Function, 2002, 27: 367-374. doi: 10.1247/csf.27.367
|
[6] |
Shi T, DiMarzio C A. Multispectral method for skin imaging: development and validation[J]. Applied Optics, 2007, 46: 8619-8626.
|
[7] |
Romier J, Selves J, Gastellu-Etchegorry J. Imaging spectrometer based on an acousto-optic tunable filter[J]. Rev Sci Instrum, 1998, 69: 2859-2867. doi: 10.1063/1.1149025
|
[8] |
Shingu H, Homma K, Kurosaki H, et al. Field observation of surface conditions using LCTF spectro-polarimeter[C]// Proc of SPIE. 2003, 5017: 116-127.
|
[9] |
Blais-Ouellette S, Daigle O, Taylor K. The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging[C]//Proc of SPIE. 2006: 62695H.
|
[10] |
Verhaegen M, Lessard S, Blais-Ouellette S. Narrow band SWIR hyperspectral imaging: a new approach based on volume Bragg grating[C]//Proc of SPIE. 2012: 83740G.
|
[11] |
Kogelnik H. Coupled wave theory for thick hologram gratings[J]. Bell Syst Tech J, 1969, 48: 2909-2945. doi: 10.1002/j.1538-7305.1969.tb01198.x
|
[12] |
段佳著, 赵祥杰, 张大勇. 基于透射式体全息光栅的光学相控阵放大级研究[J]. 光学学报, 2014, 34: 0405002.
Duan Jiazhu, Zhao Xiangjie, Zhang Dayong. Design of optical phased arrays amplifier stage based on volume holographic grating. Acta Optica Sinica, 2014, 34: 0405002
|
[13] |
Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 1981, 71(7): 811-818. doi: 10.1364/JOSA.71.000811
|
[14] |
Moharam M G, Gaylord T K, Magnusson R. Criteria for Bragg regime diffraction by phased gratings[J]. Optics Communication, 1980, 32(1): 14-18.
|
[15] |
Laskin A, Laskin V. π Shaper-refractive beam shaping optics for advanced laser technologies[J]. Journal of Physics: Conference Series, 2011, 276: 012171.
|
[1] | Yang Wenyu, Chai Xiang, Zhu Enping, Liu Xiaojing. Development of mechanical property analysis program for space thermionic fuel element[J]. High Power Laser and Particle Beams, 2024, 36(3): 036001. doi: 10.11884/HPLPB202436.230388 |
[2] | Fu Pengtao, Zhang Anlong, Gu Peiyong. Research on diagnosis of fuel defects in operating pressurized water reactors[J]. High Power Laser and Particle Beams, 2024, 36(3): 036002. doi: 10.11884/HPLPB202436.230387 |
[3] | Fang Wentao, Tong Lili, Cao Xuewu. Influence of wire wrap mixing model on sub-channel analysis of sodium-cooled fast reactor assembly[J]. High Power Laser and Particle Beams, 2023, 35(9): 096001. doi: 10.11884/HPLPB202335.230051 |
[4] | Wang Huacai, Cheng Huanlin, Song Wulin, Guo Lina, Tang Qi, Yang Qifa. Raman characteristic analysis of oxidation of fuel pellets for intact and leaked pressurized water reactors fuel rods with different burnup[J]. High Power Laser and Particle Beams, 2023, 35(11): 116003. doi: 10.11884/HPLPB202335.230047 |
[5] | Chen Xirong, Xie Jinsen, Yu Tao, Ni Zining, Deng Nianbiao, Shao Zeng, Xie Haoran. Analysis of different burnup calculation models on nuclide components of spent fuel assembly in commercial pressurized water reactor[J]. High Power Laser and Particle Beams, 2023, 35(5): 056002. doi: 10.11884/HPLPB202335.230010 |
[6] | Qin Kaiwen, Yang Bo, Wang Ziming, Qian Yunchen, Liu Haojie, Liu Yibao. Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34(12): 126001. doi: 10.11884/HPLPB202234.220156 |
[7] | Liu Xiao, Yang Wankui, Wang Hao, Wang Jian, Zhang Songbao, Zhang Xinrong, Li Wenhua. Size measurements of beryllium assemblies after long term service[J]. High Power Laser and Particle Beams, 2022, 34(5): 056009. doi: 10.11884/HPLPB202234.210516 |
[8] | Ding Wenjie, Wang Shaohua, Gao Jiao, Guo Haibing, Ma Jimin, Liu Zhiyong. Safety boundary of flow channel partial blockage in plate-type fuel assembly[J]. High Power Laser and Particle Beams, 2022, 34(5): 056003. doi: 10.11884/HPLPB202234.210508 |
[9] | Li Jinggang, Wang Chao, Chen Jun, Peng Jinghan. Development and verification of fuel assembly bowing model in software package PCM[J]. High Power Laser and Particle Beams, 2022, 34(2): 026004. doi: 10.11884/HPLPB202234.210378 |
[10] | Chen Siyan, Pan Hui, Chen Jun, Zhao Changyou, Zheng Junxiao, Wang Chao, Lu Haoliang, Han Song. Analysis and calculation on core neutronics affected by the assembly bowing in pressurized water reactor nuclear power plant[J]. High Power Laser and Particle Beams, 2022, 34(2): 026014. doi: 10.11884/HPLPB202234.210312 |
[11] | Li Yun, Li Hua, Zhang Lin, Pu Zengping, Jiao Yongjun, Zhang Kun, Huang Chunlan. Major in-pile performance of CF2 fuel assembly[J]. High Power Laser and Particle Beams, 2020, 32(10): 106002. doi: 10.11884/HPLPB202032.200159 |
[12] | Fang Haitao, Zhao Yongsong, Zhang Xilin, Zhou Xingbin, Li Wei, Chen Hongli. In-core fuel management strategy design of lead-cooled fast reactor M2LFR-1000[J]. High Power Laser and Particle Beams, 2018, 30(9): 096003. doi: 10.11884/HPLPB201830.180083 |
[13] | Du Xianan, Cao Liangzhi, Zheng Youqi. Method of generating homogenized fast reactor assembly constants based on point-wise cross section[J]. High Power Laser and Particle Beams, 2017, 29(01): 016001. doi: 10.11884/HPLPB201729.160176 |
[14] | Lu Di, Xia Bangyang, Ning Zhonghao, Huang Shi’en, Zhong Minxiao, Liao Hongkuan, Wang Shiqian. Design of mixed moderators’ fuel assembly in SCWR[J]. High Power Laser and Particle Beams, 2017, 29(05): 056004. doi: 10.11884/HPLPB201729.160205 |
[15] | Yang Ping, Ming Zhedong, Xu Yu, Wang Lianjie, Xia Bangyang. Design consideration and performance analysis of supercritial water reactor fuel assembly[J]. High Power Laser and Particle Beams, 2017, 29(01): 016023. doi: 10.11884/HPLPB201729.160411 |
[16] | Wang Mengqi, Ding Qianxue, Mei Qiliang. Neutron flux calculation of reactor pressure vessel for MOX fuel core[J]. High Power Laser and Particle Beams, 2017, 29(03): 036008. doi: 10.11884/HPLPB201729.160179 |
[17] | Wei Jinfeng, Xu Xingxing, Fu Xuefeng, Cai Dechang. Feasibility study of 24-month fuel cycle for a 177-assembly core[J]. High Power Laser and Particle Beams, 2017, 29(01): 016020. doi: 10.11884/HPLPB201729.160336 |
[18] | Lv Yang, Zeng Xian, Huang Hongwen. Nuclear fuel cycle scenarios on fusion-fission hybrid reactor symbiotic systems[J]. High Power Laser and Particle Beams, 2015, 27(01): 016003. doi: 10.11884/HPLPB201527.016003 |
[19] | Li Wenqian, Li Hong, Xie Feng, Cao Jianzhu, Fang Sheng. Neutron shielding effects of spent fuel tank of high temperature reactor[J]. High Power Laser and Particle Beams, 2013, 25(01): 227-232. doi: 10.3788/HPLPB20132501.0227 |
[20] | Cao Pan, Yu Hong, Hu Yun, Chen Yiyu, Xu Li. Calculation of pin power distributions in fuel subassembly of China Experimental Fast Reactor[J]. High Power Laser and Particle Beams, 2013, 25(05): 1275-1278. doi: 10.3788/HPLPB20132505.1275 |