Xie Pengfei, Lei Jun, Lü Wenqiang, et al. Experimental investigation of the package of diode laser chip based on lateral heat flow suppression[J]. High Power Laser and Particle Beams, 2021, 33: 021003. doi: 10.11884/HPLPB202133.200241
Citation: Fang Mingjiang, Liu Qiang, Yan Liping, et al. Evaluation of electromagnetic shielding effectiveness for metallic enclosure with three-dimensional complex thin slots[J]. High Power Laser and Particle Beams, 2018, 30: 073201. doi: 10.11884/HPLPB201830.180047

Evaluation of electromagnetic shielding effectiveness for metallic enclosure with three-dimensional complex thin slots

doi: 10.11884/HPLPB201830.180047
  • Received Date: 2018-01-30
  • Rev Recd Date: 2018-04-02
  • Publish Date: 2018-07-15
  • Thin slots with complex configurations used in practical engineering make the evaluation of electromagnetic shielding effectiveness(SE) for metallic enclosure increasingly challenging. The contour path (CP) method is adopted to deal with the complex thin slots in order to keep the coarse gridding in FDTD programming. An equivalent model with simple configuration is presented to replace the complex nested slits, and as a result, the programming and calculation efficiency of the CP-FDTD method is improved when dealing with thin slots with complex configurations. The equivalent model and CP-FDTD are used to calculate the SE of metallic enclosure with two typical kinds of thin slot configurations at the wide frequency range respectively. Results are in good agreements with those obtained by using fine-gridded FDTD, and high calculation efficiency is achieved at the same time.
  • [1]
    刘备, 刘强, 阚勇, 等. 基于TLM的双腔体屏蔽系数快速算法[J]. 强激光与粒子束, 2015, 27: 053202. doi: 10.11884/HPLPB201527.053202

    Liu Bei, Liu Qiang, Kan Yong, et al. Fast prediction algorithm for shielding effectiveness of double enclosures based on transmission line equivalent circuit method. High Power Laser and Particle Beams, 2015, 27: 053202 doi: 10.11884/HPLPB201527.053202
    [2]
    Konefal T, Dawson J F, Marvin A C, et al. A fast multiple mode intermediate level circuit model for the prediction of shielding effectiveness of a rectangular box containing a rectangular aperture[J]. IEEE Trans Electromagn Compat, 2005, 47(4): 678-691. doi: 10.1109/TEMC.2005.853715
    [3]
    张亚普, 达新宇, 谢铁城. 孔缝箱体屏蔽效能电磁拓扑分析模型[J]. 强激光与粒子束, 2014, 26: 023204. doi: 10.3788/HPLPB201426.023204

    Zhang Yapu, Da Xinyu, Xie Tiecheng. Electromagnetic topology model for shielding effectiveness estimation of metallic enclosure with apertures. High Power Laser and Particle Beams, 2014, 26: 023204 doi: 10.3788/HPLPB201426.023204
    [4]
    阚勇, 闫丽萍, 赵翔, 等. 基于电磁拓扑的多腔体屏蔽效能快速算法[J]. 物理学报, 2016, 65: 030702. doi: 10.7498/aps.65.030702

    Kan Yong, Yan Liping, Zhao Xiang, et al. Electromagnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures. Acta Physica Sinica, 2016, 65: 030702 doi: 10.7498/aps.65.030702
    [5]
    Dehkhoda P, Tavakoli A, Azadifar M. Shielding effectiveness of an enclosure with finite wall thickness and perforated opposing walls at oblique incidence and arbitrary polarization by GMMoM[J]. IEEE Trans Electromagn Compat, 2012, 54(4): 792-805. doi: 10.1109/TEMC.2012.2188855
    [6]
    Gilbert J, Holland R. Implementation of the thin-slot formalism in the finite-difference EMP Code THREDⅡ[J]. IEEE Trans Nucl Sci, 1981, 28(6): 4269-4274. doi: 10.1109/TNS.1981.4335711
    [7]
    Taflove A, Umashankar K R, Beker B, et al. Detailed FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens[J]. IEEE Trans Antennas Propagat, 1988, 36(2): 247-257. doi: 10.1109/8.1102
    [8]
    孙大伟, 俞集辉. 基于环路法的三维细孔缝电磁分析算法[J]. 重庆大学学报, 2006, 29(5): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200605008.htm

    Sun Dawei, Yu Jihui. A 3D thin slot model for shielding analysis. Journal of Chongqing University, 2006, 29(5): 32-35 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200605008.htm
    [9]
    Riley D J, Turner C D. Hybrid thin-slot algorithm for the analysis of narrow apertures in finite-difference time-domain calculations[J]. IEEE Trans Antennas Propagat, 1990, 38(12): 1943-1950. doi: 10.1109/8.60983
    [10]
    Brenger J P. A Huygens subgridding for the FDTD method[J]. IEEE Trans Antennas Propagat, 2006, 54(12): 3797-3804. doi: 10.1109/TAP.2006.886519
    [11]
    Xue M F, Yin W Y, Liu Q F, et al. Wideband pulse responses of metallic rectangular multistage cascaded enclosures illuminated by an EMP[J]. IEEE Trans Electromagn Compat, 2008, 50(4): 928-939. doi: 10.1109/TEMC.2008.927943
  • Relative Articles

    [1]Zhao Yufei, Tong Cunzhu, Wei Zhipeng. Sum frequency generation of semiconductor laser based on V-shaped spectral beam combining[J]. High Power Laser and Particle Beams, 2023, 35(9): 091008. doi: 10.11884/HPLPB202335.230127
    [2]Xie Pengfei, Lei Jun, Zhang Yonggang, Wang Chengqian, Lü Wenqiang, Wang Zhao, Du Weichuan, Gao Songxin. Study of packaging in master oscillator power amplifier diode laser chip[J]. High Power Laser and Particle Beams, 2023, 35(5): 051001. doi: 10.11884/HPLPB202335.220235
    [3]Fu Bowen, Zhang Qinnan, Tian Yong, Tian Jindong. Analysis of thermal effect of high-power semiconductor laser spectral combining grating[J]. High Power Laser and Particle Beams, 2022, 34(3): 031018. doi: 10.11884/HPLPB202234.210271
    [4]He Lin’an, Zhou Kun, Zhang Liang, Li Yi, Du Weichuan, Hu Yao, Gao Songxin, Tang Chun. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams, 2021, 33(9): 091001. doi: 10.11884/HPLPB202133.210099
    [5]Liu Ximing, Wei Xu, Dou Ligang. Research and design of semiconductor laser temperature stabilization system in laser system[J]. High Power Laser and Particle Beams, 2019, 31(2): 021002. doi: 10.11884/HPLPB201931.180335
    [6]Hu Liemao, Li Zhiyong, Liu Songyang, Ning Fangjin, Tan Rongqing. Second harmonic generation of ultraviolet laser based on high power laser diode array[J]. High Power Laser and Particle Beams, 2019, 31(2): 020101. doi: 10.11884/HPLPB201931.190025
    [7]Cao Ruru, Wang Deyu, Zhao Qinglin, Li Shu. Wide range voltage of diode laser driver[J]. High Power Laser and Particle Beams, 2018, 30(9): 091002. doi: 10.11884/HPLPB201830.170481
    [8]Yu Junhong, Guo Linhui, Tan Hao, Meng Huicheng, Gao Songxin, Wu Deyong. Feedback efficiency for diode laser wavelength stabilization system[J]. High Power Laser and Particle Beams, 2015, 27(04): 041014. doi: 10.11884/HPLPB201527.041014
    [9]Yu Junhong, Guo Linhui, Wang Zhao, Tan Hao, Gao Songxin, Wu Deyong, Zhang Kai. High brightness fiber coupled diode laser module with 200 W class output power[J]. High Power Laser and Particle Beams, 2014, 26(11): 111001. doi: 10.11884/HPLPB201426.111001
    [10]Yu Junhong, Guo Linhui, Gao Songxin, Tan Hao, Yin Xinqi. Research on high-power single emitter fiber-coupled diode laser[J]. High Power Laser and Particle Beams, 2014, 26(05): 051005. doi: 10.11884/HPLPB201426.051005
    [11]Wang Wen, Chu Jinlei, Gao Xin, Zhang Jing, Qiao Zhongliang, Bo Baoxue. Thermal characteristics of semiconductor laser based on muti-chip packaging[J]. High Power Laser and Particle Beams, 2014, 26(01): 011015. doi: 10.3788/HPLPB201426.011015
    [12]Li Zhiyong, Tan Rongqing, Xu Cheng, Li Lin, Liu Shiming, Zhao Zhilong, Huang Wei. Gratings' rotation angle tolerance for diode lasers with external cavity formed by volume Bragg grating[J]. High Power Laser and Particle Beams, 2013, 25(02): 310-314. doi: 10.3788/HPLPB20132502.0310
    [13]Yin Zhiyong, Wang Yuefeng, Yin Shaoyun, Du Chunlei, Jia Wenwu, Wang Junzhen, Bai Huijun. Impact of microlens changes on the homogenization effect of semiconductor laser beam[J]. High Power Laser and Particle Beams, 2013, 25(10): 2556-2560. doi: 10.3788/HPLPB20132510.2556
    [14]Li Hui, Qu Yi, Zhang Jianjia, Xin Desheng, Liu Guojun. High power 905 nm InGaAs tunnel junction series stacked semiconductor lasers[J]. High Power Laser and Particle Beams, 2013, 25(10): 2517-2520. doi: 10.3788/HPLPB20132510.2517
    [15]Li Zhiyong, Tan Rongqing, Xu Cheng, Li Lin. Laser doide array with narrow linewidth for rubidium vapor laser pumping[J]. High Power Laser and Particle Beams, 2013, 25(04): 875-878.
    [16]liu gang, tang xiaojun, wang chao, liu lei, liang xingbo, xu liujing, du tao, chen sanbin, liu yang. Design of micro-channel heat sink for high power laser diode[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [17]wang zhiqun, yao shun, cui bifeng, wang zhiyong, shen guangdi. Steady state thermal analysis of multi-active zone tunnel regeneration semiconductor laser[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [18]liu anping, han weifeng, huang mao, luo qingchun. Application of strained InGaAs/GaAs quantum-well to laser emitting at 1 054 nm[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [19]li zaijin, hu liming, wang ye, zhang xing, wang xiangpeng, qin li, liu yun, wang lijun. High power high duty-cycle 808 nm wavelength laser diode[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [20]feng zhen-zhong, chen jian-guo, yan di-yong, zhang jing. Theory analysis of cross-injection locking of two diode lasers[J]. High Power Laser and Particle Beams, 2006, 18(04): 0- .
  • Cited by

    Periodical cited type(1)

    1. 陈芬,崔碧峰,冯靖宇,郑翔瑞,陈中标. 大功率半导体激光器光束质量的研究与进展. 激光与光电子学进展. 2023(21): 26-35 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.4 %FULLTEXT: 21.4 %META: 74.5 %META: 74.5 %PDF: 4.1 %PDF: 4.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %其他: 0.7 %其他: 0.7 %China: 1.0 %China: 1.0 %India: 0.1 %India: 0.1 %Singapore: 0.1 %Singapore: 0.1 %Taichung: 0.1 %Taichung: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %三明: 0.1 %三明: 0.1 %上海: 1.6 %上海: 1.6 %东莞: 0.7 %东莞: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乌兰察布: 0.1 %乌兰察布: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.2 %六安: 0.2 %北京: 14.5 %北京: 14.5 %十堰: 0.1 %十堰: 0.1 %南京: 1.1 %南京: 1.1 %南通: 0.1 %南通: 0.1 %台北: 0.2 %台北: 0.2 %台南: 0.2 %台南: 0.2 %台州: 0.2 %台州: 0.2 %台湾省: 0.2 %台湾省: 0.2 %合肥: 0.2 %合肥: 0.2 %吉林: 0.2 %吉林: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %四平: 0.2 %四平: 0.2 %多伦多: 0.1 %多伦多: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.1 %太原: 0.1 %奥勒姆: 0.2 %奥勒姆: 0.2 %孝感: 0.1 %孝感: 0.1 %宁波: 0.2 %宁波: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %广州: 0.2 %广州: 0.2 %庆阳: 0.1 %庆阳: 0.1 %张家口: 0.6 %张家口: 0.6 %成都: 0.9 %成都: 0.9 %扬州: 0.2 %扬州: 0.2 %无锡: 0.4 %无锡: 0.4 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %来宾: 0.1 %来宾: 0.1 %杭州: 0.6 %杭州: 0.6 %格兰特县: 0.1 %格兰特县: 0.1 %梅州: 0.1 %梅州: 0.1 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.1 %沈阳: 0.1 %河池: 0.1 %河池: 0.1 %泰州: 0.1 %泰州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.6 %济南: 0.6 %济宁: 0.1 %济宁: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.8 %深圳: 0.8 %温哥华: 0.1 %温哥华: 0.1 %湖州: 0.4 %湖州: 0.4 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.1 %潍坊: 0.1 %焦作: 0.1 %焦作: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.4 %福州: 0.4 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 13.3 %芒廷维尤: 13.3 %芝加哥: 0.1 %芝加哥: 0.1 %萍乡: 0.1 %萍乡: 0.1 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.1 %衡阳: 0.1 %西宁: 44.4 %西宁: 44.4 %西安: 0.8 %西安: 0.8 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 1.6 %运城: 1.6 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.2 %重庆: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 0.7 %长沙: 0.7 %长治: 0.3 %长治: 0.3 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.2 %阿什本: 0.2 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.1 %驻马店: 0.1 %其他其他ChinaIndiaSingaporeTaichungTaiwan, ChinaUnited States三明上海东莞中山临汾丹东乌兰察布佛山保定六安北京十堰南京南通台北台南台州台湾省合肥吉林呼和浩特哥伦布嘉兴四平多伦多大连天津太原奥勒姆孝感宁波宣城常州广州庆阳张家口成都扬州无锡昆明晋城普洱来宾杭州格兰特县梅州武汉沈阳河池泰州洛阳济南济宁淮安深圳温哥华湖州漯河潍坊焦作石家庄福州绵阳芒廷维尤芝加哥萍乡衡水衡阳西宁西安贵阳达州运城邯郸郑州鄂州重庆长春长沙长治阳泉阿什本青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (1129) PDF downloads(157) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return