Zhang Dapeng, Gao Yang, Jia Le, et al. Layout design method for BAW ladder filters[J]. High Power Laser and Particle Beams, 2018, 30: 014101. doi: 10.11884/HPLPB201830.170112
Citation: Liu Fengxin, Feng Guoying, Yang Chao, et al. Experimental analysis of ZrO2 nanopowders by electrical explosion method of zirconium wire[J]. High Power Laser and Particle Beams, 2018, 30: 074103. doi: 10.11884/HPLPB201830.180055

Experimental analysis of ZrO2 nanopowders by electrical explosion method of zirconium wire

doi: 10.11884/HPLPB201830.180055
  • Received Date: 2018-02-09
  • Rev Recd Date: 2018-04-03
  • Publish Date: 2018-07-15
  • The experimental equipment used for synthesizing nanopowders via the electrical explosion of wire was designed and built based on the high-voltage breakdown method. Equipped with current and voltage measuring system, the equipment could conveniently prepare nanoparticles and record the current and voltage of the electric explosion process in real time. Electrical explosion experiments were carried out on zirconium wires, and the deposition energy of Zr wire in the process of electric explosion and the change of the state were analyzed. The influence of charging voltage on deposition energy and nanoparticles properties was studied. Component analysis of the produced nanoparticles was completed by X-ray diffraction (XRD) and energy spectrometer (EDS). The particle morphology of the nanopowders was observed by the transmission electron microscope (TEM).The particle size and distribution of the nanoparticles were obtained based on the statistics and observation of TEM images. The results show that the increase of voltage increased the deposition energy and shortened the evaporation time of zirconium wire. Higher charging voltage could significantly reduce nanopowder particle size distribution, and get a smaller average diameter of particles. The products of Zirconium wire electrical explosion were ZrO2 nanoparticles, based on the structures of the monoclinic crystal(m-ZrO2) and the cubic crystal (c-ZrO2), and the particles were perfectly spherical, smooth and clear, and the particle size distribution of nanoparticles was concentrated between 10 and 40 nm.
  • [1]
    黄传勇, 孙淑珍, 张中太. 生物陶瓷复合材料的研究[J]. 中国生物医学工程学报, 2000, 19(3): 281-287. doi: 10.3969/j.issn.0258-8021.2000.03.009

    Huang Chuanyong, Sun Shuzhen, Zhang Zhongtai. Study on bioceramic composite materials. Chinese Journal of Biomedical Engineering, 2000, 19(3): 281-287 doi: 10.3969/j.issn.0258-8021.2000.03.009
    [2]
    余鑫萌, 徐宝奎, 袁发得. 二氧化锆的稳定化及其应用[J]. 中国材料进展, 2007, 26(1): 28-32. doi: 10.3969/j.issn.1674-3962.2007.01.007

    Yu Xinmeng, Xu Baokui, Yuan Fade. Stabilizing and applications of zirconia. Materials China, 2007, 26(1): 28-32 doi: 10.3969/j.issn.1674-3962.2007.01.007
    [3]
    张鑫, 彭浩然, 张春鸣, 等. 纳米氧化锆热障涂层高温性能演变研究[J]. 热喷涂技术, 2012, 4(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-RPTJ201204009.htm

    Zhang Xin, Peng Haoran, Zhang Chunming, et al. Evolution of high-temperature properties for nano-zirconia thermal barrier coating. Thermal Spray Technology, 2012, 4(4): 15-19 https://www.cnki.com.cn/Article/CJFDTOTAL-RPTJ201204009.htm
    [4]
    Zinatloo-Ajabshir S, Salavati-Niasari M. Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: Structural, optical and photocatalytic studies[J]. Journal of Molecular Liquids, 2016, 216: 545-551. doi: 10.1016/j.molliq.2016.01.062
    [5]
    刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性[J]. 物理学报, 2004, 53(1): 282-285. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200401052.htm

    Liu Huangqing, Wang Lingling, Qin Weiping. Luminescence of Eu3+ lons in nanocrystalline zirconia. Acta Physica Sinica, 2004, 53(1): 282-285 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200401052.htm
    [6]
    Song Y Q, He D H, Xu B Q. Effects of preparation methods of ZrO2 support on catalytic performances of Ni/ZrO2 catalysts in methane partial oxidation to syngas[J]. Applied Catalysis A General, 2008, 337(1): 19-28. doi: 10.1016/j.apcata.2007.11.032
    [7]
    Renuka L, Anantharaju K S, Sharma S C, et al. A comparative study on the structural, optical, electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different routes[J]. Journal of Alloys & Compounds, 2017, 695: 382-395.
    [8]
    李世文, 冯国英, 李玮, 等. 电爆炸制备纳米铜粉及物相研究[J]. 强激光与粒子束, 2013, 25(9): 2408-2412. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201309048.htm

    Li Shiwen, Feng Guoying, Li Wei, et al. Preparation and phase analysis of Cu nano-power by electrical explosion. High Power Laser and Particle Beams, 2013, 25(9): 2408-2412 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201309048.htm
    [9]
    Bagazeev A V, Kotov Y A, Medvedev A I, et al. Characteristics of ZrO2 nanopowders produced by electrical explosion of wire[J]. Nanotechnologies in Russia, 2010, 5(9-10): 656-664. doi: 10.1134/S1995078010090107
    [10]
    李世文, 冯国英, 李玮, 等. 高压击穿铜丝物相研究[J]. 物理学报, 2012, 61: 225206. doi: 10.7498/aps.61.225206

    Li Shiwen, Feng Guoying, Li Wei, et al. Study on phase analysis of nanoparticles by high-voltage electrical explosion method of copper wire. Acta Physica Sinica, 2012, 61: 225206 doi: 10.7498/aps.61.225206
    [11]
    Peng C, Wang J, Zhou N, et al. Fabrication of nanopowders by electrical explosion of a copper wire in water[J]. Current Applied Physics, 2016, 16(3): 284-287. doi: 10.1016/j.cap.2015.12.009
    [12]
    伍友成, 邓建军, 郝世荣, 等. 电爆炸丝法制备纳米Al2O3粉末[J]. 强激光与粒子束, 2005, 17(11): 1753-1756. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200511033.htm

    Wu Youcheng, Deng Jianjun, Hao Shirong, et al. Synthesis of Al2O3 nanopowders by electrical explosion of wires. High Power Laser and Particle Beams, 2005, 17(11): 1753-1756 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200511033.htm
    [13]
    Yanuka D, Kozlov M, Zinowits H E, et al. Convergence of shock waves generated by underwater electrical explosion of cylindrical wire arrays between different boundary geometries[J]. Physics of Plasmas, 2015, 22: 085004.
    [14]
    Cho C, Choi Y W, Kang C, et al. Effects of the medium on synthesis of nanopowders by wire explosion process[J]. Applied Physics Letters, 2007, 91(14): 155.
    [15]
    刘隆晨, 赵军平, 张禹, 等. 氩气中铝丝电爆炸沉积能量对制备铝纳米粉体特性的影响[J]. 强激光与粒子束, 2016, 28(10): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201610024.htm

    Liu Longchen, Zhao Junping, Zhang Yu, et al. Effect of deposited energy of wire electrical explosion in argon on characteristics of synthesized aluminum nanopowder. High Power Laser and Particle Beams, 2016, 28(10): 117-122 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201610024.htm
    [16]
    Lee Y S, Bora B, Yap S L, et al. Effect of ambient air pressure on synthesis of copper and copper oxide nanoparticles by wire explosion process[J]. Current Applied Physics, 2011, 12(1): 199-203.
    [17]
    周晟阳, 冯国英, 李玮, 等. 电爆炸法制备Fe3O4纳米颗粒及其物相研究[J]. 强激光与粒子束, 2016, 28: 084101. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201608027.htm

    Zhou Shengyang, Feng Guoying, Li Wei, et al. Phase analysis of Fe3O4 nanoparticles produced by electrical explosion of iron wire. High Power Laser and Particle Beams, 2016, 28: 084101 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201608027.htm
  • Relative Articles

    [1]Cheng Dan, Zhang Kun, Fang Yitao, Zhang Haobin, Cheng Zhaochen, Wu Tong, Yu Yang, Sun Rufeng, Li Yao, Song Kuiyan, Zhang Liming, Zhang Dayong, Zhao Hong, Feng Ting. Theoretical simulation of compound ring cavity filter for single longitudinal mode fiber laser[J]. High Power Laser and Particle Beams, 2023, 35(12): 121001. doi: 10.11884/HPLPB202335.230145
    [2]Tuo Huanxiang, Sun Baogen, Luo Qing, Wu Fangfang, Zhou Tianyu, Lu Ping. Design and simulation of the coupler of single resonant cavity bunch length monitor[J]. High Power Laser and Particle Beams, 2022, 34(4): 044002. doi: 10.11884/HPLPB202234.210261
    [3]Gao Yang, Wen Shuwen, Yuan Jing, Xu Xiaqian. Design of interdigital-filter based diplexer with high isolation and wideband[J]. High Power Laser and Particle Beams, 2019, 31(8): 084101. doi: 10.11884/HPLPB201931.180308
    [4]Wang Xian, Zhang Dewei, Wang Shuxing, Lü Dalong, Zhang Yi. Characteristic analysis of folded HMSIW and implements in equalizers and filters[J]. High Power Laser and Particle Beams, 2019, 31(9): 093206. doi: 10.11884/HPLPB201931.190134
    [5]Wen Shuwen, Gao Yang, Xu Xiaqian. Initial design procedure of microstrip interdigital filter with tapped-line[J]. High Power Laser and Particle Beams, 2018, 30(7): 074101. doi: 10.11884/HPLPB201830.180007
    [6]Wen Shuwen, Gao Yang, Xu Xiaxi. Grounding via-hole effect pre-considered microstrip interdigital filter design[J]. High Power Laser and Particle Beams, 2018, 30(8): 084101. doi: 10.11884/HPLPB201830.180093
    [7]Gao Yang, Lei Qiang, Zhao Junwu, Lv Junguang. Research status and development trend of micro-mechanical resonance accelerometer[J]. High Power Laser and Particle Beams, 2017, 29(08): 080201. doi: 10.11884/HPLPB201729.170045
    [8]Jia Le, Gao Yang, Han Chao, Lv Junguang. Design of bulk acoustic wave filter for Wi-Fi band[J]. High Power Laser and Particle Beams, 2017, 29(10): 104104. doi: 10.11884/HPLPB201729.170141
    [9]Gao Yang, Zhao Kunli, Han Chao. Design of S-band narrow-band bandpass bulk acoustic wave filter[J]. High Power Laser and Particle Beams, 2017, 29(11): 114101. doi: 10.11884/HPLPB201729.170195
    [10]Ni Yuan, Ji Ke, Wang Jingli, Chen Heming. Four-wavelength THz filter based on photonic crystal ring resonator[J]. High Power Laser and Particle Beams, 2016, 28(10): 103101. doi: 10.11884/HPLPB201628.160055
    [11]Gao Yang, Zhao Kunli, Zhao Junwu. Calculus-like analysis method for analyzing bulk acoustic wave force sensors’ sensitivity[J]. High Power Laser and Particle Beams, 2016, 28(06): 064101. doi: 10.11884/HPLPB201628.064101
    [12]Zhang Yongliang, Su Tao, Wu Bian, Yan Jiaxin. An improved computer-aided tuning method for microwave filters[J]. High Power Laser and Particle Beams, 2015, 27(12): 123003. doi: 10.11884/HPLPB201527.123003
    [13]He Wanjing, Gao Yang, Li Junru, Huang Zhenhua. Force-sensing characteristics of film bulk acoustic resonator[J]. High Power Laser and Particle Beams, 2015, 27(02): 024117. doi: 10.11884/HPLPB201527.024117
    [14]Cai Xun, Gao Yang, Huang Zhenhua. Parametric design method of Tx and Rx filter in bulk acoustic wave duplexer[J]. High Power Laser and Particle Beams, 2015, 27(12): 124101. doi: 10.11884/HPLPB201527.124101
    [15]Sun Peng, Li Xiangqiang, Liu Qingxiang, Zhang Zhengquan, Li Wei. Output LC filter parameter optimization of single-phase parallel resonant converter[J]. High Power Laser and Particle Beams, 2014, 26(06): 063027. doi: 10.11884/HPLPB201426.063027
    [16]Lu Bin, Cui Bohua. Analysis and design of terahertz waveguide filter[J]. High Power Laser and Particle Beams, 2013, 25(06): 1527-1529. doi: 10.3788/HPLPB20132506.1527
    [17]Zhou Hai, Wu Wenkai, Lin Donghui, Chen Gang, Chen Liangming, Zhang Junwei, Xu Yuanli, Lian Kenan, Fu Xuejun, Chen Xiaojuan, Wang Meicong, Huang Zhan, Fu Xuenong, Jue Xinghua, Zhu MingZhi, Wei Xiaofeng, Zhang Xiaomin. Review on opto-mechanical structure design of megajoule high-power laser driver[J]. High Power Laser and Particle Beams, 2012, 24(10): 2277-2283. doi: 10.3788/HPLPB20122410.2277
    [18]liu qineng. Theoretic study of total reflection through effect polarization filter of photonic crystal[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [19]hu fangrong, yao jun. Microelectromechanical systems deformable mirror actuator based on electrostatic repulsive force[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [20]li guo-lin, shu ting, yuan cheng-wei. Output multiplexer for S band high power microwave[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
  • Cited by

    Periodical cited type(3)

    1. 谭鹏辉,郭辉辉,安嘉乐,刘婷婷. 基于改进人工蜂群算法的体声波滤波器自动布局. 计算机应用研究. 2023(12): 3660-3665 .
    2. 李丽,赵益良,李宏军. 用于C波段的薄膜体声波谐振器滤波器. 半导体技术. 2019(12): 951-955 .
    3. 贾乐,高杨,张大鹏. 体声波滤波器自动布局工具的设计开发. 压电与声光. 2018(04): 483-486 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.0 %FULLTEXT: 20.0 %META: 74.9 %META: 74.9 %PDF: 5.1 %PDF: 5.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.0 %其他: 9.0 %其他: 0.7 %其他: 0.7 %Bacoor: 0.1 %Bacoor: 0.1 %China: 0.4 %China: 0.4 %Clemmons: 0.1 %Clemmons: 0.1 %India: 0.0 %India: 0.0 %Indianapolis: 0.1 %Indianapolis: 0.1 %Kao-sung: 0.0 %Kao-sung: 0.0 %Malvern: 0.2 %Malvern: 0.2 %Nahant: 0.2 %Nahant: 0.2 %Rochester: 0.2 %Rochester: 0.2 %San Lorenzo: 0.0 %San Lorenzo: 0.0 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.3 %United States: 0.3 %[]: 1.1 %[]: 1.1 %上海: 2.1 %上海: 2.1 %东莞: 0.2 %东莞: 0.2 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %丹佛: 0.4 %丹佛: 0.4 %丽水: 0.1 %丽水: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %列治文山: 0.1 %列治文山: 0.1 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %加尔各答: 0.1 %加尔各答: 0.1 %北京: 9.6 %北京: 9.6 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南昌: 0.0 %南昌: 0.0 %南通: 0.0 %南通: 0.0 %厦门: 0.4 %厦门: 0.4 %台北: 0.5 %台北: 0.5 %台州: 0.7 %台州: 0.7 %合肥: 0.1 %合肥: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.5 %嘉兴: 0.5 %圣何塞: 0.3 %圣何塞: 0.3 %圣地亚哥: 0.1 %圣地亚哥: 0.1 %圣罗莎: 0.2 %圣罗莎: 0.2 %夏洛特: 0.3 %夏洛特: 0.3 %多伦多: 0.1 %多伦多: 0.1 %天津: 0.7 %天津: 0.7 %太原: 0.0 %太原: 0.0 %孝感: 0.1 %孝感: 0.1 %宁波: 0.1 %宁波: 0.1 %安那罕: 0.2 %安那罕: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.1 %密蘇里城: 0.1 %尼古湖: 0.2 %尼古湖: 0.2 %巴里: 0.0 %巴里: 0.0 %常州: 0.1 %常州: 0.1 %常州市天宁区: 0.0 %常州市天宁区: 0.0 %广州: 0.9 %广州: 0.9 %张家口: 0.1 %张家口: 0.1 %徐州: 0.0 %徐州: 0.0 %德罕: 0.9 %德罕: 0.9 %成都: 0.6 %成都: 0.6 %成都市双流区: 0.1 %成都市双流区: 0.1 %扬州: 0.3 %扬州: 0.3 %新乡: 0.0 %新乡: 0.0 %无锡: 0.5 %无锡: 0.5 %昆明: 0.0 %昆明: 0.0 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %景德镇: 0.3 %景德镇: 0.3 %曲靖: 0.1 %曲靖: 0.1 %杭州: 1.2 %杭州: 1.2 %武汉: 0.5 %武汉: 0.5 %武汉市蔡甸区: 0.0 %武汉市蔡甸区: 0.0 %比拉德坎斯: 0.1 %比拉德坎斯: 0.1 %沈阳: 0.1 %沈阳: 0.1 %河源: 0.1 %河源: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %淄博: 0.0 %淄博: 0.0 %淮北: 0.0 %淮北: 0.0 %深圳: 2.0 %深圳: 2.0 %清远: 0.0 %清远: 0.0 %温州: 0.2 %温州: 0.2 %湖州: 0.5 %湖州: 0.5 %滑铁卢: 0.4 %滑铁卢: 0.4 %漯河: 1.5 %漯河: 1.5 %琼海: 0.1 %琼海: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.8 %绵阳: 0.8 %罗利: 0.1 %罗利: 0.1 %聊城: 0.1 %聊城: 0.1 %自贡: 0.0 %自贡: 0.0 %芒廷维尤: 21.9 %芒廷维尤: 21.9 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.6 %苏州: 0.6 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 29.2 %西宁: 29.2 %西安: 0.6 %西安: 0.6 %诺伊达: 0.1 %诺伊达: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %费城: 0.2 %费城: 0.2 %路易斯维尔: 0.1 %路易斯维尔: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.2 %重庆: 0.2 %长沙: 1.2 %长沙: 1.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.2 %青岛: 0.2 %韩国大邱: 0.0 %韩国大邱: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马哈拉施特拉邦: 0.1 %马哈拉施特拉邦: 0.1 %马德里: 0.1 %马德里: 0.1 %其他其他BacoorChinaClemmonsIndiaIndianapolisKao-sungMalvernNahantRochesterSan LorenzoTaiwan, ChinaUnited States[]上海东莞中山临汾丹东丹佛丽水佛山保定列治文山加利福尼亚州加尔各答北京十堰南京南昌南通厦门台北台州合肥哥伦布嘉兴圣何塞圣地亚哥圣罗莎夏洛特多伦多天津太原孝感宁波安那罕宣城密蘇里城尼古湖巴里常州常州市天宁区广州张家口徐州德罕成都成都市双流区扬州新乡无锡昆明晋城普洱景德镇曲靖杭州武汉武汉市蔡甸区比拉德坎斯沈阳河源洛阳济南淄博淮北深圳清远温州湖州滑铁卢漯河琼海石家庄福州秦皇岛纽约绵阳罗利聊城自贡芒廷维尤芝加哥苏州衡阳衢州襄阳西宁西安诺伊达诺沃克贵阳费城路易斯维尔运城邯郸郑州鄂州重庆长沙长治阳泉青岛韩国大邱香港特别行政区马哈拉施特拉邦马德里

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1628) PDF downloads(134) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return