Volume 30 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
Liu Fengxin, Feng Guoying, Yang Chao, et al. Experimental analysis of ZrO2 nanopowders by electrical explosion method of zirconium wire[J]. High Power Laser and Particle Beams, 2018, 30: 074103. doi: 10.11884/HPLPB201830.180055
Citation: Liu Fengxin, Feng Guoying, Yang Chao, et al. Experimental analysis of ZrO2 nanopowders by electrical explosion method of zirconium wire[J]. High Power Laser and Particle Beams, 2018, 30: 074103. doi: 10.11884/HPLPB201830.180055

Experimental analysis of ZrO2 nanopowders by electrical explosion method of zirconium wire

doi: 10.11884/HPLPB201830.180055
  • Received Date: 2018-02-09
  • Rev Recd Date: 2018-04-03
  • Publish Date: 2018-07-15
  • The experimental equipment used for synthesizing nanopowders via the electrical explosion of wire was designed and built based on the high-voltage breakdown method. Equipped with current and voltage measuring system, the equipment could conveniently prepare nanoparticles and record the current and voltage of the electric explosion process in real time. Electrical explosion experiments were carried out on zirconium wires, and the deposition energy of Zr wire in the process of electric explosion and the change of the state were analyzed. The influence of charging voltage on deposition energy and nanoparticles properties was studied. Component analysis of the produced nanoparticles was completed by X-ray diffraction (XRD) and energy spectrometer (EDS). The particle morphology of the nanopowders was observed by the transmission electron microscope (TEM).The particle size and distribution of the nanoparticles were obtained based on the statistics and observation of TEM images. The results show that the increase of voltage increased the deposition energy and shortened the evaporation time of zirconium wire. Higher charging voltage could significantly reduce nanopowder particle size distribution, and get a smaller average diameter of particles. The products of Zirconium wire electrical explosion were ZrO2 nanoparticles, based on the structures of the monoclinic crystal(m-ZrO2) and the cubic crystal (c-ZrO2), and the particles were perfectly spherical, smooth and clear, and the particle size distribution of nanoparticles was concentrated between 10 and 40 nm.
  • loading
  • [1]
    黄传勇, 孙淑珍, 张中太. 生物陶瓷复合材料的研究[J]. 中国生物医学工程学报, 2000, 19(3): 281-287. doi: 10.3969/j.issn.0258-8021.2000.03.009

    Huang Chuanyong, Sun Shuzhen, Zhang Zhongtai. Study on bioceramic composite materials. Chinese Journal of Biomedical Engineering, 2000, 19(3): 281-287 doi: 10.3969/j.issn.0258-8021.2000.03.009
    [2]
    余鑫萌, 徐宝奎, 袁发得. 二氧化锆的稳定化及其应用[J]. 中国材料进展, 2007, 26(1): 28-32. doi: 10.3969/j.issn.1674-3962.2007.01.007

    Yu Xinmeng, Xu Baokui, Yuan Fade. Stabilizing and applications of zirconia. Materials China, 2007, 26(1): 28-32 doi: 10.3969/j.issn.1674-3962.2007.01.007
    [3]
    张鑫, 彭浩然, 张春鸣, 等. 纳米氧化锆热障涂层高温性能演变研究[J]. 热喷涂技术, 2012, 4(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-RPTJ201204009.htm

    Zhang Xin, Peng Haoran, Zhang Chunming, et al. Evolution of high-temperature properties for nano-zirconia thermal barrier coating. Thermal Spray Technology, 2012, 4(4): 15-19 https://www.cnki.com.cn/Article/CJFDTOTAL-RPTJ201204009.htm
    [4]
    Zinatloo-Ajabshir S, Salavati-Niasari M. Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: Structural, optical and photocatalytic studies[J]. Journal of Molecular Liquids, 2016, 216: 545-551. doi: 10.1016/j.molliq.2016.01.062
    [5]
    刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性[J]. 物理学报, 2004, 53(1): 282-285. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200401052.htm

    Liu Huangqing, Wang Lingling, Qin Weiping. Luminescence of Eu3+ lons in nanocrystalline zirconia. Acta Physica Sinica, 2004, 53(1): 282-285 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200401052.htm
    [6]
    Song Y Q, He D H, Xu B Q. Effects of preparation methods of ZrO2 support on catalytic performances of Ni/ZrO2 catalysts in methane partial oxidation to syngas[J]. Applied Catalysis A General, 2008, 337(1): 19-28. doi: 10.1016/j.apcata.2007.11.032
    [7]
    Renuka L, Anantharaju K S, Sharma S C, et al. A comparative study on the structural, optical, electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different routes[J]. Journal of Alloys & Compounds, 2017, 695: 382-395.
    [8]
    李世文, 冯国英, 李玮, 等. 电爆炸制备纳米铜粉及物相研究[J]. 强激光与粒子束, 2013, 25(9): 2408-2412. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201309048.htm

    Li Shiwen, Feng Guoying, Li Wei, et al. Preparation and phase analysis of Cu nano-power by electrical explosion. High Power Laser and Particle Beams, 2013, 25(9): 2408-2412 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201309048.htm
    [9]
    Bagazeev A V, Kotov Y A, Medvedev A I, et al. Characteristics of ZrO2 nanopowders produced by electrical explosion of wire[J]. Nanotechnologies in Russia, 2010, 5(9-10): 656-664. doi: 10.1134/S1995078010090107
    [10]
    李世文, 冯国英, 李玮, 等. 高压击穿铜丝物相研究[J]. 物理学报, 2012, 61: 225206. doi: 10.7498/aps.61.225206

    Li Shiwen, Feng Guoying, Li Wei, et al. Study on phase analysis of nanoparticles by high-voltage electrical explosion method of copper wire. Acta Physica Sinica, 2012, 61: 225206 doi: 10.7498/aps.61.225206
    [11]
    Peng C, Wang J, Zhou N, et al. Fabrication of nanopowders by electrical explosion of a copper wire in water[J]. Current Applied Physics, 2016, 16(3): 284-287. doi: 10.1016/j.cap.2015.12.009
    [12]
    伍友成, 邓建军, 郝世荣, 等. 电爆炸丝法制备纳米Al2O3粉末[J]. 强激光与粒子束, 2005, 17(11): 1753-1756. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200511033.htm

    Wu Youcheng, Deng Jianjun, Hao Shirong, et al. Synthesis of Al2O3 nanopowders by electrical explosion of wires. High Power Laser and Particle Beams, 2005, 17(11): 1753-1756 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200511033.htm
    [13]
    Yanuka D, Kozlov M, Zinowits H E, et al. Convergence of shock waves generated by underwater electrical explosion of cylindrical wire arrays between different boundary geometries[J]. Physics of Plasmas, 2015, 22: 085004.
    [14]
    Cho C, Choi Y W, Kang C, et al. Effects of the medium on synthesis of nanopowders by wire explosion process[J]. Applied Physics Letters, 2007, 91(14): 155.
    [15]
    刘隆晨, 赵军平, 张禹, 等. 氩气中铝丝电爆炸沉积能量对制备铝纳米粉体特性的影响[J]. 强激光与粒子束, 2016, 28(10): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201610024.htm

    Liu Longchen, Zhao Junping, Zhang Yu, et al. Effect of deposited energy of wire electrical explosion in argon on characteristics of synthesized aluminum nanopowder. High Power Laser and Particle Beams, 2016, 28(10): 117-122 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201610024.htm
    [16]
    Lee Y S, Bora B, Yap S L, et al. Effect of ambient air pressure on synthesis of copper and copper oxide nanoparticles by wire explosion process[J]. Current Applied Physics, 2011, 12(1): 199-203.
    [17]
    周晟阳, 冯国英, 李玮, 等. 电爆炸法制备Fe3O4纳米颗粒及其物相研究[J]. 强激光与粒子束, 2016, 28: 084101. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201608027.htm

    Zhou Shengyang, Feng Guoying, Li Wei, et al. Phase analysis of Fe3O4 nanoparticles produced by electrical explosion of iron wire. High Power Laser and Particle Beams, 2016, 28: 084101 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201608027.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1430) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return