Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353
Citation:
Sun Mingjun, Sun Dawei, Pan Nan. Radiation impact quantification analysis for fuel handing accident[J]. High Power Laser and Particle Beams, 2018, 30: 096004. doi: 10.11884/HPLPB201830.180058
Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353
Citation:
Sun Mingjun, Sun Dawei, Pan Nan. Radiation impact quantification analysis for fuel handing accident[J]. High Power Laser and Particle Beams, 2018, 30: 096004. doi: 10.11884/HPLPB201830.180058
Based on Hongyanhe nuclear power plant, research on radionuclide source, transfer and release pathways were carried out, for CPR1000 fuel handing accident. The source term analytical models were constructed, including fuel reserve room and environment. On this basis, the radiation impact of an assembly drop accident was quantitatively estimated. The results show that public doses with 16 directions of exclusion area boundary and planning restricted area outer boundary satisfied the GB6249-2011 dose limits with some margin. The above doses were determined using top 0.5% meteorology. By sensitivity analysis of key parameters, direction of the largest dose, predominant nuclide and key time period were identified. Furthermore, the rationality of accident cutoff time taken as 12 h, and the necessity of fuel operation starting time taken as 100 h were proved. Meanwhile, the effects of scrubbing depth and normal ventilation isolation delay time on public doses were studied. The results show that public dose decreased exponentially with the increase of scrubbing depth, while it increased rapidly with the extension of normal ventilation isolation delay time, which can support the decision of nuclear power plant design.
Sun Dawei, Mei Qiliang, Fu Yaru, et al. AP1000 loss of coolant accident radiological consequence assessment based on AST method. Nuclear Science and Engineering, 2016, 36(1): 103-108 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201601015.htm
[6]
Burley G. Evaluation of fission product release and transport[R]. Washington: Radiological Safety Branch Division of Reactor Licensing, 1971.
[7]
RG1.25-1972, Assumptions used for evaluating the potential radiological consequences of a fuel handling accident in the fuel handling and storage facility for boiling and pressurized water reactors[S].
Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353
Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353