Ma Tianjun, Sun Jianhai, Hao Baoliang, et al. Microfabrication of folded waveguide using UV-LIGA for 220 GHz traveling wave tube[J]. High Power Laser and Particle Beams, 2015, 27: 024101. doi: 10.11884/HPLPB201527.024101
Citation: Zheng Yifan, Zeng Zhi, Zeng Ming, et al. Discrimination of drugs and explosives in cargo inspections byapplyingmachine learningin muon tomography[J]. High Power Laser and Particle Beams, 2018, 30: 086002. doi: 10.11884/HPLPB201830.180062

Discrimination of drugs and explosives in cargo inspections byapplyingmachine learningin muon tomography

doi: 10.11884/HPLPB201830.180062
Funds:

National Natural Science Foundation of China 11035002

More Information
  • Author Bio:

    Zheng Yifan(1993—), female, master candidate, engaged in muon tomography; yfzheng11@126.com

  • Corresponding author: Zeng Zhi(1978—), male, associate professor; zengzhi@tsinghua.edu.cn
  • Received Date: 2018-03-05
  • Rev Recd Date: 2018-04-25
  • Publish Date: 2018-08-15
  • A previously under-explored difficulty in cargo inspections is how to efficiently detect drugs and explosives concealed in large dense metals.Cosmic ray muon tomography is a promising non-destructive imaging technique to solve the problem because muons are naturally generated in the atmosphere and have sufficient energy to completely penetrate large dense containers.In this work it is investigated that to what extent drugs and explosives of a certain size could be discriminated from air background and metals by muon tomography within acceptable measuring time.A Geant4 Monte Carlo simulation is built based on the Tsinghua University MUon Tomography facility (TUMUTY) and a support vector machine (SVM) classifier based on machine learning is trained to differentiate drugs and explosives from air background and metals automatically.For various 20 cm×20 cm×20 cm objects, with 10 min to 30 min measuring time, drugs and explosives could be discriminated from background and metals by muon tomography with an error rate of about 1%.With 1 min, the error rate deteriorates to 12.9%.
  • [1]
    Decker S H, Chapman M T. Drug smugglers on drug smuggling: Lessons from the inside[M]. Pennsylvania: Temple University Press, 2008.
    [2]
    Zentai G. X-ray imaging for homeland security[J]. International Journal of Signal and Imaging Systems Engineering, 2010, 3(1): 13-20. doi: 10.1504/IJSISE.2010.034628
    [3]
    Kiraly B, Olah L, Csikai J. Neutron-based techniques for detection of explosives and drugs[J]. Radiation Physics and Chemistry, 2001, 61(3/6): 781-784.
    [4]
    Procureur S. Muon imaging: Principles, technologies and applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 878: 169-179.
    [5]
    Chatzidakis S, Choi C K, Tsoukalas L H. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 828: 37-45.
    [6]
    Rossi B B. High-energy particles[M]. New York: Prentice-Hall, 1965.
    [7]
    He W, Xiao S, Shuai M, et al. A grey incidence algorithm to detect high-Z material using cosmic ray muons[J]. Journal of Instrumentation, 2017, 12(10): P10019. doi: 10.1088/1748-0221/12/10/P10019
    [8]
    Blanpied G, Kumar S, Dorroh D, et al. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 352-358. doi: 10.1016/j.nima.2014.11.027
    [9]
    Wang X, Zeng M, Zeng Z, et al. The cosmic ray muon tomography facility based on large scale MRPC detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 390-393. doi: 10.1016/j.nima.2015.01.024
    [10]
    Hagmann C, Lange D, Wright D. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes[C]//Nuclear Science Symposium Conference Record. 2007, 2: 1143-1146.
    [11]
    Nasrabadi N M. Pattern recognition and machine learning[J]. Journal of Electronic Imaging, 2007, 16: 049901. doi: 10.1117/1.2819119
  • Relative Articles

    [1]Cai Jinchi, Hu Linlin, Ma Guowu, Chen Hongbin, Jin Xiao, Chen Huaibi. Theoretical method for fast optimization of rectangular transition structure in folded waveguide devices[J]. High Power Laser and Particle Beams, 2015, 27(05): 053101. doi: 10.11884/HPLPB201527.053101
    [2]Cai Jinchi, Hu Linlin, Ma Guowu, Chen Hongbin, Jin Xiao, Chen Huaibi. Design and experimental study of beam optical system for 220 GHz folded waveguide BWO[J]. High Power Laser and Particle Beams, 2015, 27(04): 043101. doi: 10.11884/HPLPB201527.043101
    [3]Xie Fuqiang, Ding Guifu, Zhao Xiaolin, Cheng Ping. Design, fabrication and characterization of a sheet-beam 140 GHz folded waveguide based on multi-step SU-8 UV-LIGA[J]. High Power Laser and Particle Beams, 2015, 27(08): 083101. doi: 10.11884/HPLPB201527.083101
    [4]Zhou Quanfeng, Song Rui, Lei Wenqiang, Jiang Yi, Hu Peng, Yan Lei, Ma Guowu, Chen Hongbin. Design and test of wideband 0.22 THz folded-waveguide travelling wave tube[J]. High Power Laser and Particle Beams, 2015, 27(11): 113102. doi: 10.11884/HPLPB201527.113102
    [5]Zhu Xiurong, Zhou Bin, Du Ai, Li Xiaofen. Fabrication of cylindrical shock wave tube for ICF hydrodynamic instability experiments[J]. High Power Laser and Particle Beams, 2014, 26(02): 022004. doi: 10.3788/HPLPB201426.022004
    [6]Yan Shengmei, Su Wei, Wang Yajun, Chen Zhang, Jin Dazhi, Xiang Wei. Theoretical analysis and numerical simulation of parallel multi-beam THz folded waveguide traveling-wave tube[J]. High Power Laser and Particle Beams, 2014, 26(08): 083105. doi: 10.11884/HPLPB201426.083105
    [7]Jiang Yi, Lei Wenqiang, Hu Linlin, Hu Peng, Yan Lei, Zhou Quanfeng, Ma Guowu, Chen Hongbin. Design and experiments of 0.14 THz traveling-wave tubes[J]. High Power Laser and Particle Beams, 2014, 26(12): 123101. doi: 10.11884/HPLPB201426.123101
    [8]Wang Shaomeng, Hou Yan, Wei Yanyu, Duan Zhaoyun, Gong Yubin. Study on 800 V traveling-wave tube[J]. High Power Laser and Particle Beams, 2013, 25(07): 1613-1614. doi: 10.3788/HPLPB20132507.1613
    [9]Xu Ao, Hu Linlin, Chen Hongbin, Yan Lei, Zhou Chuanming. S-parameter characteristics in THz folded waveguide slow wave structures[J]. High Power Laser and Particle Beams, 2013, 25(04): 968-972.
    [10]Chen Zhang, Wang Yajun. Design of 0.14 THz watt-level folded waveguide traveling wave tube[J]. High Power Laser and Particle Beams, 2013, 25(06): 1483-1488. doi: 10.3788/HPLPB20132506.1483
    [11]Cai Jun, Feng Jinjun, Hu Yinfu, Wu Xianping, Tang Ye, Du Yinghua, Pan Pan, Liu Jingkai. Oscillation suppression for W-band folded waveguide traveling wave tube[J]. High Power Laser and Particle Beams, 2013, 25(05): 1195-1199. doi: 10.3788/HPLPB20132505.1195
    [12]Liu Yang, Xu Jin, Wei Yanyu, Lai Jianqiang, Xu Xiong, Huang Mingzhi, Tang Tao, Gong Yubin. V-band high-power sheet-beam folded-waveguide traveling-wave tube[J]. High Power Laser and Particle Beams, 2012, 24(11): 2698-2702. doi: 10.3788/HPLPB20122411.2698
    [13]Tian Yanyan, Yue Lingna, Xu Jin, Wang Wenxiang, Xu Xiong, Wei Yanyu, Gong Yubin. Transition waveguide for traveling wave tubes with folded rectangular groove waveguide[J]. High Power Laser and Particle Beams, 2012, 24(11): 2693-2697. doi: 10.3788/HPLPB20122411.2693
    [14]wang yajun, chen zhang, cheng yanlin, shi zhigui, yin hairong. 220 GHz folded waveguide slow-wave structure[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [15]gong huarong, gong yubin, tang tao, xu jin, wang wenxiang. Design of sever for folded waveguide traveling wave tubes[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [16]tang tao, gong huarong, gong yubin, wang wenxiang. Design of transition waveguide for millimeter wave folded waveguide traveling wave tubes[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [17]hu yulu, yang zhonghai, li bin, li jianqing, ma shanshan, huang tao, jin xiaolin. Analysis of static trajectories in traveling wave tubes[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- .
    [18]zhu zhao-jun, jia bao-fu, luo zheng-xiang, wang jian. Perturbation experiment method for helix traveling-wave tube interaction impedance measurement[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [19]zhu mei, wang e-feng, feng jin-jun, . Characteristic study of traveling wave tube with slow synchronous wave[J]. High Power Laser and Particle Beams, 2007, 19(10): 0- .
    [20]yao lie-ming, yang zhong-hai, li bin, huang tao. Thermal analysis of TWT collector[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- .
  • Cited by

    Periodical cited type(4)

    1. 丁文豪,魏望和,朱焜,陶聪,冷劲松. W波段半矩形环螺旋线行波管设计. 机电工程技术. 2025(02): 60-63+82 .
    2. 詹晓非,朱增伟. 太赫兹矩形折叠波导慢波结构铜叠片电铸厚度均匀性研究. 真空电子技术. 2022(04): 67-72 .
    3. 王自成,唐伯俊,谢文球,田宏,董芳. 0.22THz高效率行波管的互作用计算. 强激光与粒子束. 2016(02): 88-93 . 本站查看
    4. 谢辅强,丁桂甫,赵小林,程萍. 140GHz带状注弯折波导SU-8工艺与传输特性(英文). 强激光与粒子束. 2015(08): 148-154 . 本站查看

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.4 %FULLTEXT: 19.4 %META: 77.5 %META: 77.5 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.2 %其他: 3.2 %其他: 0.1 %其他: 0.1 %China: 0.3 %China: 0.3 %India: 0.1 %India: 0.1 %Lemont: 0.1 %Lemont: 0.1 %[]: 0.2 %[]: 0.2 %上海: 0.9 %上海: 0.9 %东莞: 0.3 %东莞: 0.3 %中山: 0.2 %中山: 0.2 %保定: 0.1 %保定: 0.1 %北京: 21.3 %北京: 21.3 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.6 %台州: 0.6 %合肥: 0.2 %合肥: 0.2 %吉林: 0.1 %吉林: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 1.8 %天津: 1.8 %太原: 0.1 %太原: 0.1 %孝感: 0.1 %孝感: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.3 %宣城: 0.3 %常州: 0.1 %常州: 0.1 %广州: 0.4 %广州: 0.4 %弗吉: 0.1 %弗吉: 0.1 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 0.6 %张家口: 0.6 %成都: 0.1 %成都: 0.1 %扬州: 0.3 %扬州: 0.3 %新乡: 0.2 %新乡: 0.2 %晋中: 0.1 %晋中: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.8 %杭州: 1.8 %桂林: 0.1 %桂林: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 1.5 %武汉: 1.5 %沈阳: 0.1 %沈阳: 0.1 %波士顿: 0.1 %波士顿: 0.1 %泰州: 0.4 %泰州: 0.4 %济南: 0.1 %济南: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.9 %深圳: 0.9 %温州: 0.6 %温州: 0.6 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.1 %湘潭: 0.1 %漯河: 3.1 %漯河: 3.1 %珠海: 0.1 %珠海: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.3 %秦皇岛: 0.3 %芒廷维尤: 13.8 %芒廷维尤: 13.8 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.2 %衡阳: 0.2 %西宁: 37.3 %西宁: 37.3 %西安: 0.9 %西安: 0.9 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.5 %郑州: 0.5 %长春: 0.3 %长春: 0.3 %长沙: 1.8 %长沙: 1.8 %阳泉: 0.3 %阳泉: 0.3 %青岛: 0.4 %青岛: 0.4 %黄冈: 0.1 %黄冈: 0.1 %其他其他ChinaIndiaLemont[]上海东莞中山保定北京十堰南京南昌南通台州合肥吉林哈尔滨哥伦布大庆大连天津太原孝感宜昌宣城常州广州弗吉弗吉尼亚州张家口成都扬州新乡晋中普洱杭州桂林桃园武汉沈阳波士顿泰州济南海口深圳温州湖州湘潭漯河珠海盐城石家庄秦皇岛芒廷维尤芝加哥苏州衡水衡阳西宁西安达尔斯运城邯郸郑州长春长沙阳泉青岛黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (2289) PDF downloads(185) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return