Citation: | Xie Lingyun, He Tao, Zhang Jinlong, et al. Improve the LIDT of high-reflection coatings by planarizing nodular defects[J]. High Power Laser and Particle Beams, 2018, 30: 092001. doi: 10.11884/HPLPB201830.180067 |
[1] |
Bloembergen N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied Optics, 1973, 12(4): 661-664. doi: 10.1364/AO.12.000661
|
[2] |
Kozlowski M R, Chow R. Role of defects in laser damage of multilayer coatings[C]//Proc of SPIE. 1994, 2114: 640-649.
|
[3] |
Cheng Xinbin, Ding Tao, He Wenyan, et al. Using engineered nodules to study laser-induced damage in optical thin films with nanosecond pulses[C]//Proc of SPIE. 2011: 819002.
|
[4] |
谢凌云, 程鑫彬, 张锦龙, 等. 节瘤缺陷激光损伤的研究进展[J]. 强激光与粒子束, 2016, 28: 090201. doi: 10.11884/HPLPB201628.160058
Xie Lingyun, Cheng Xinbin, Zhang Jinlong, et al. Research progress of laser-induced damage of nodular defects. High Power Laser and Particle Beams, 2016, 28: 090201 doi: 10.11884/HPLPB201628.160058
|
[5] |
Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection[C]//Proc of SPIE. 1999, 3578: 387-397.
|
[6] |
Stolz C J, Feit M D, Pistor T V. Laser intensification by spherical inclusions embedded within multilayer coatings[J]. Applied Optics, 2006, 45(7): 1594-1601. doi: 10.1364/AO.45.001594
|
[7] |
Cheng Xinbin, Zhang Jinlong, Ding Tao, et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science & Applications, 2013, 2(6): e80.
|
[8] |
Cheng Xinbin, Tuniyazi A, Wei Zeyong, et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J]. Optics Express, 2015, 23(7): 8609-8619. doi: 10.1364/OE.23.008609
|
[9] |
Bennett J M. How to clean surfaces[C]//Proc of SPIE. 2004, 5273: 195-206.
|
[10] |
Rigatti A L. Cleaning process versus laser-damage threshold of coated optical components[C]//Proc of SPIE. 2005, 5647: 136-140.
|
[11] |
Stolz C J, Sheehan L M, Von Gunten M K, et al. Advantages of evaporation of hafnium in a reactive environment for manufacture of high-damage-threshold multilayer coatings by electron-beam deposition[C]//Proc of SPIE. 1999, 3738: 318-324.
|
[12] |
Papandrew A B, Stolz C J, Wu Z, et al. Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy[C]//Proc of SPIE. 2001, 4347: 53-61.
|
[13] |
Wolfe J E, Qiu S R, Stolz C J. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining[J]. Applied Optics, 2011, 50: C457-C462. doi: 10.1364/AO.50.00C457
|
[14] |
Stolz C J, Wolfe J E, Adams J J, et al. High laser-resistant multilayer mirrors by nodular defect planarization[J]. Applied Optics, 2014, 53(4): A291-A296. doi: 10.1364/AO.53.00A291
|
[15] |
Stolz C J, Wolfe J E, Mirkarimi P B, et al. Defect insensitive 100 J/cm2 multilayer mirror coating process[C]//Proc of SPIE. 2013: 888502.
|