Volume 30 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Mo Jun, Feng Guoying, Liao Yu, et al. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30: 081003. doi: 10.11884/HPLPB201830.180079
Citation: Mo Jun, Feng Guoying, Liao Yu, et al. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30: 081003. doi: 10.11884/HPLPB201830.180079

All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide

doi: 10.11884/HPLPB201830.180079
  • Received Date: 2018-03-21
  • Rev Recd Date: 2018-04-27
  • Publish Date: 2018-08-15
  • In this paper, the normal single-mode fiber is pulled into microfiber by the method of carbon dioxide laser heating, wet method is used to transfer graphene and cover microfiber to form a composite waveguide. The light of different wavelengths enters the composite waveguide through the coupler, interacts with graphene in the form of evanescent waves, thus the research experiment of preferential absorption characteristic is carried out. When a short wave light was used as a pump light, changes in the long wave spectrum with the increase of incident intensity were measured, obtaining a modulation depth of about 3.5 dB, and a modulation efficiency of 0.62 dB·mW-1. When the long wave light was used as the pump light, the light transmittance of the short wave signal was measured to change by ~1.9%. The experimental results show that with the increase of the incident light intensity of the pump light at any wavelength, the composite waveguide exhibits its preferential absorption characteristics. In addition, when the long-wave and short-wave waves passed through the composite waveguide, the transmittance changes with the input power were tested, experiments show that the long-wavelength transmittance increases faster than the short-wavelength transmittance, and the corresponding theoretical analysis can be made from the two aspects of energy band and evanescent wave.
  • loading
  • [1]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. doi: 10.1126/science.1102896
    [2]
    Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238. doi: 10.1038/nphoton.2016.15
    [3]
    吴凌远, 李阳龙, 刘国栋, 等. 1064 nm纳秒激光对石墨烯的损伤效应研究[J]. 强激光与粒子束, 2015, 27: 081009. doi: 10.11884/HPLPB201527.081009

    Wu Lingyuan, Li Yanglong, Liu Guodong, et al. 1064 nm nanosecond laser induced damage effection graphene. High Power Laser and Particle Beams, 2015, 27: 081009 doi: 10.11884/HPLPB201527.081009
    [4]
    李艳娜, 汤跃, 韦丽萍, 等. SOI环形光波导谐振腔双层石墨烯调制器[J]. 强激光与粒子束, 2015, 27: 024109. doi: 10.11884/HPLPB201527.024109

    Li Yanna, Tang Yue, Wei Liping, et al. SOI-ring waveguide coupled double-layer graphene modulator. High Power Laser and Particle Beams, 2015, 27: 024109 doi: 10.11884/HPLPB201527.024109
    [5]
    Liu Ming, Yin Xiaobo, Ulinavila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64. doi: 10.1038/nature10067
    [6]
    Koester S J, Li Mo. High-speed waveguide-coupled graphene-on-graphene optical modulators[J]. Applied Physics Letters, 2012, 100(17): 611.
    [7]
    Liu Ming, Yin Xiaobo, Zhang Xiang. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482. doi: 10.1021/nl204202k
    [8]
    Lee C C, Suzuki S, Xie W, et al. Broadband graphene electro-optic modulators with sub-wavelength thickness[J]. Optics Express, 2012, 20(5): 5264-5269. doi: 10.1364/OE.20.005264
    [9]
    Luo Siyuan, Wang Yanan, Xin Tongxin, et al. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10(1): 199. doi: 10.1186/s11671-015-0866-7
    [10]
    Liu Z B, Feng M, Jiang W S, et al. Broadband all-optical modulation using a graphene-covered-microfiber[J]. Laser Physics Letters, 2013, 10: 065901. doi: 10.1088/1612-2011/10/6/065901
    [11]
    Li Wei, Chen Bigeng, Meng Chao, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955. doi: 10.1021/nl404356t
    [12]
    Liao Y, Feng G Y, Zhou H, et al. Ultra-broadband all-optical graphene modulator[J]. IEEE Photonics Technology Letters, 2018, 30(8): 661-664. doi: 10.1109/LPT.2018.2800769
    [13]
    Wang Ruiduo, Li Diao, Wu Hao, et al. All-optical intensity modulator by polarization dependent graphene-microfiber waveguide[J]. IEEE Photonics Journal, 2017, 9(5): 1-8.
    [14]
    张慧, 陈宇, 王志腾, 等. 石墨烯可调谐被动调Q掺铒光纤激光器[J]. 强激光与粒子束, 2012, 24(12): 2807-2810. doi: 10.3788/HPLPB20122412.2807

    Zhang Hui, Chen Yu, Wang Zhiteng, et al. Wavelength-tunable passively Q-switched erbium doped fiber laser with graphene-based saturable absorber. High Power Laser and Particle Beams, 2012, 24(12): 2807-2810 doi: 10.3788/HPLPB20122412.2807
    [15]
    Xing Guichuan, Guo Hangchen, Zhang Xinhai, et al. The physics of ultrafast saturable absorption in graphene[J]. Optics Express, 2010, 18(5): 4564. doi: 10.1364/OE.18.004564
    [16]
    Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters, 2006, 6(12): 2667-2673. doi: 10.1021/nl061420a
    [17]
    Chen Jinhui, Zheng Bicai, Shao Guanghao, et al. An all-optical modulator based on a stereo graphene-microfiber structure[J]. Light Science & Applications, 2015, 4(12): e360.
    [18]
    Zhang H, Healy N, Li S, et al. Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss[J]. Scientific Reports, 2016, 6: 23512. doi: 10.1038/srep23512
    [19]
    Garmire E. Resonant optical nonlinearities in semiconductors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 6(6): 1094-1110.
    [20]
    Ruzicka B A, Wang Shuai, Liu Jianwei, et al. Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition[J]. Optical Materials Express, 2012, 2(6): 708-716. doi: 10.1364/OME.2.000708
    [21]
    Zhang F, Han S, Liu Y, et al. Dependence of the saturable absorption of graphene upon excitation photon energy[J]. Applied Physics Letters, 2015, 106(9): 666-669.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1065) PDF downloads(178) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return